Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Novel Machine Learning for Big Data Analytics in Intelligent Support Information Management Systems

Novel Machine Learning for Big Data Analytics in Intelligent Support Information Management Systems Two-dimensional1 arrays of bi-component structures made of cobalt and permalloy elliptical dots with thickness of 25 nm, length 1 mm and width of 225 nm, have been prepared by a self-aligned shadow deposition technique. Brillouin light scattering has been exploited to study the frequency dependence of thermally excited magnetic eigenmodes on the intensity of the external magnetic field, applied along the easy axis of the elements.Scientific information technology has been developed rapidly. Here, the purposes are to make people's lives more convenient and ensure information management and classification. The machine learning algorithm is improved to obtain the optimized Light Gradient Boosting Machine (LightGBM) algorithm. Then, an Android-based intelligent support information management system is designed based on LightGBM for the big data analysis and classification management of information in the intelligent support information management system. The system is designed with modules of employee registration and login, company announcement notice, attendance and attendance management, self-service, and daily tools with the company as the subject. Furthermore, the performance of the constructed information management system is analyzed through simulations. Results demonstrate that the training time of the optimized LightGBM algorithm can stabilize at about 100s, and the test time can stabilize at 0.68s. Besides, its accuracy rate can reach 89.24%, which is at least 3.6% higher than other machine learning algorithms. Moreover, the acceleration efficiency analysis of each algorithm suggests that the optimized LightGBM algorithm is suitable for processing large amounts of data; its acceleration effect is more apparent, and its acceleration ratio is higher than other algorithms. Hence, the constructed intelligent support information management system can reach a high accuracy while ensuring the error, with apparent acceleration effect. Therefore, this model can provide an experimental reference for information classification and management in various fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Management Information Systems (TMIS) Association for Computing Machinery

Novel Machine Learning for Big Data Analytics in Intelligent Support Information Management Systems

Loading next page...
 
/lp/association-for-computing-machinery/novel-machine-learning-for-big-data-analytics-in-intelligent-support-m0UVIgy7BT

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 Association for Computing Machinery.
ISSN
2158-656X
eISSN
2158-6578
DOI
10.1145/3469890
Publisher site
See Article on Publisher Site

Abstract

Two-dimensional1 arrays of bi-component structures made of cobalt and permalloy elliptical dots with thickness of 25 nm, length 1 mm and width of 225 nm, have been prepared by a self-aligned shadow deposition technique. Brillouin light scattering has been exploited to study the frequency dependence of thermally excited magnetic eigenmodes on the intensity of the external magnetic field, applied along the easy axis of the elements.Scientific information technology has been developed rapidly. Here, the purposes are to make people's lives more convenient and ensure information management and classification. The machine learning algorithm is improved to obtain the optimized Light Gradient Boosting Machine (LightGBM) algorithm. Then, an Android-based intelligent support information management system is designed based on LightGBM for the big data analysis and classification management of information in the intelligent support information management system. The system is designed with modules of employee registration and login, company announcement notice, attendance and attendance management, self-service, and daily tools with the company as the subject. Furthermore, the performance of the constructed information management system is analyzed through simulations. Results demonstrate that the training time of the optimized LightGBM algorithm can stabilize at about 100s, and the test time can stabilize at 0.68s. Besides, its accuracy rate can reach 89.24%, which is at least 3.6% higher than other machine learning algorithms. Moreover, the acceleration efficiency analysis of each algorithm suggests that the optimized LightGBM algorithm is suitable for processing large amounts of data; its acceleration effect is more apparent, and its acceleration ratio is higher than other algorithms. Hence, the constructed intelligent support information management system can reach a high accuracy while ensuring the error, with apparent acceleration effect. Therefore, this model can provide an experimental reference for information classification and management in various fields.

Journal

ACM Transactions on Management Information Systems (TMIS)Association for Computing Machinery

Published: Oct 5, 2021

Keywords: Machine learning

References