Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Coalescing random walks is a fundamental distributed process, where a set of particles perform independent discrete-time random walks on an undirected graph. Whenever two or more particles meet at a given node, they merge and continue as a single random walk. The coalescence time is defined as the expected time until only one particle remains, starting from one particle at every node. Despite recent progress such as that of Cooper et al., the coalescence time for graphs, such as binary trees, d-dimensional tori, hypercubes, and, more generally, vertex-transitive graphs, remains unresolved.We provide a powerful toolkit that results in tight bounds for various topologies including the aforementioned ones. The meeting time is defined as the worst-case expected time required for two random walks to arrive at the same node at the same time. As a general result, we establish that for graphs whose meeting time is only marginally larger than the mixing time (a factor of log2 n), the coalescence time of n random walks equals the meeting time up to constant factors. This upper bound is complemented by the construction of a graph family demonstrating that this result is the best possible up to constant factors. Finally, we prove a tight worst-case bound for the coalescence time of O(n3). By duality, our results yield identical bounds on the voter model. Our techniques also yield a new bound on the hitting time and cover time of regular graphs, improving and tightening previous results by Broder and Karlin, as well as those by Aldous and Fill.
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Apr 21, 2023
Keywords: Coalescing random walks
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.