Access the full text.
Sign up today, get DeepDyve free for 14 days.
Cooperative communications represent a potential candidate to combat the effects of channel fading and to increase the transmit energy efficiency in wireless sensor networks with the downside being the increased complexity. In sensor networks the power consumed in the receiving and processing circuitry can constitute a significant portion of the total consumed power. By taking into consideration such overhead, an analytical framework for studying the energy efficiency trade-off of cooperation in sensor networks is presented. This trade-off is shown to depend on several parameters such as the receive and processing power, the required quality-of-service, the power amplifier loss, and several other factors. The analytical and numerical results reveal that for small distance separation between the source and destination, direct transmission is more energy efficient than relaying. The results also reveal that equal power allocation performs as well as optimal power allocation for some scenarios. The effects of the relay location and the number of employed relays on energy efficiency are also investigated in this work. Moreover, there are experimental results conducted to verify the channel model assumed in the article.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Dec 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.