Access the full text.
Sign up today, get DeepDyve free for 14 days.
We show that approximate near neighbor search in high dimensions can be solved in a Las Vegas fashion (i.e., without false negatives) for ℓp (1≤ p≤ 2) while matching the performance of optimal locality-sensitive hashing. Specifically, we construct a data-independent Las Vegas data structure with query time O(dnρ) and space usage O(dn1+ρ) for (r, c r)-approximate near neighbors in Rd under the ℓp norm, where ρ = 1/cp + o(1). Furthermore, we give a Las Vegas locality-sensitive filter construction for the unit sphere that can be used with the data-dependent data structure of Andoni et al. (SODA 2017) to achieve optimal space-time tradeoffs in the data-dependent setting. For the symmetric case, this gives us a data-dependent Las Vegas data structure with query time O(dnρ) and space usage O(dn1+ρ) for (r, c r)-approximate near neighbors in Rd under the ℓp norm, where ρ = 1/(2cp - 1) + o(1).Our data-independent construction improves on the recent Las Vegas data structure of Ahle (FOCS 2017) for ℓp when 1 < p≤ 2. Our data-dependent construction performs even better for ℓp for all pε [1, 2] and is the first Las Vegas approximate near neighbors data structure to make use of data-dependent approaches. We also answer open questions of Indyk (SODA 2000), Pagh (SODA 2016), and Ahle by showing that for approximate near neighbors, Las Vegas data structures can match state-of-the-art Monte Carlo data structures in performance for both the data-independent and data-dependent settings and across space-time tradeoffs.
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Jan 22, 2022
Keywords: Approximate near neighbor search
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.