Access the full text.
Sign up today, get DeepDyve free for 14 days.
Optimal Layered Multicast AJAY GOPINATHAN and ZONGPENG LI, University of Calgary Recent advances in network coding research dramatically changed the underlying structure of optimal multicast routing algorithms and made them ef ciently computable. While most such algorithm design assumes a single le/layer being multicast, layered coding introduces new challenges into the paradigm due to its cumulative decoding nature. Layered coding is designed to handle heterogeneity in receiver capacities, and a node may decode layer k only if it successfully receives all layers in 1..k. We show that recently proposed optimization models for layered multicast do not correctly address this challenge. We argue that in order to achieve the absolute maximum throughput (or minimum cost), it is necessary to decouple the application-layer throughput from network-layer throughput. In particular, a node should be able to receive a nonconsecutive layer or a partial layer even if it cannot decode and utilize it (e.g., for playback in media streaming applications). The rationale is that nodes at critical network locations need to receive data just for helping other peers. We present a mathematical programming model that addresses these challenges and achieves absolute optimal performance. Simulation results show considerable throughput gain (cost reduction) compared
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) – Association for Computing Machinery
Published: Feb 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.