Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Outcome-Oriented Predictive Process Monitoring

Outcome-Oriented Predictive Process Monitoring Predictive business process monitoring refers to the act of making predictions about the future state of ongoing cases of a business process, based on their incomplete execution traces and logs of historical (completed) traces. Motivated by the increasingly pervasive availability of fine-grained event data about business process executions, the problem of predictive process monitoring has received substantial attention in the past years. In particular, a considerable number of methods have been put forward to address the problem of outcome-oriented predictive process monitoring, which refers to classifying each ongoing case of a process according to a given set of possible categorical outcomese.g., Will the customer complain or not? Will an order be delivered, canceled, or withdrawn? Unfortunately, different authors have used different datasets, experimental settings, evaluation measures, and baselines to assess their proposals, resulting in poor comparability and an unclear picture of the relative merits and applicability of different methods. To address this gap, this article presents a systematic review and taxonomy of outcome-oriented predictive process monitoring methods, and a comparative experimental evaluation of eleven representative methods using a benchmark covering 24 predictive process monitoring tasks based on nine real-life event logs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Knowledge Discovery from Data (TKDD) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/outcome-oriented-predictive-process-monitoring-i5V3rDzLxr

References (61)

Publisher
Association for Computing Machinery
Copyright
Copyright © 2019 ACM
ISSN
1556-4681
eISSN
1556-472X
DOI
10.1145/3301300
Publisher site
See Article on Publisher Site

Abstract

Predictive business process monitoring refers to the act of making predictions about the future state of ongoing cases of a business process, based on their incomplete execution traces and logs of historical (completed) traces. Motivated by the increasingly pervasive availability of fine-grained event data about business process executions, the problem of predictive process monitoring has received substantial attention in the past years. In particular, a considerable number of methods have been put forward to address the problem of outcome-oriented predictive process monitoring, which refers to classifying each ongoing case of a process according to a given set of possible categorical outcomese.g., Will the customer complain or not? Will an order be delivered, canceled, or withdrawn? Unfortunately, different authors have used different datasets, experimental settings, evaluation measures, and baselines to assess their proposals, resulting in poor comparability and an unclear picture of the relative merits and applicability of different methods. To address this gap, this article presents a systematic review and taxonomy of outcome-oriented predictive process monitoring methods, and a comparative experimental evaluation of eleven representative methods using a benchmark covering 24 predictive process monitoring tasks based on nine real-life event logs.

Journal

ACM Transactions on Knowledge Discovery from Data (TKDD)Association for Computing Machinery

Published: Mar 13, 2019

Keywords: Business process

There are no references for this article.