Access the full text.
Sign up today, get DeepDyve free for 14 days.
In the classic Maximum Weight Independent Set problem, we are given a graph G with a nonnegative weight function on its vertices, and the goal is to find an independent set in G of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6-free graph, that is, a graph that has no path on 6 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5-free graphs of Lokshtanov et al. [15] and the quasipolynomial-time algorithm on P6-free graphs of Lokshtanov et al. [14]. The main technical contribution leading to our main result is enumeration of a polynomial-size family ℱ of vertex subsets with the following property: For every maximal independent set I in the graph, ℱ contains all maximal cliques of some minimal chordal completion of G that does not add any edge incident to a vertex of I.
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Jan 22, 2022
Keywords: P6-free graphs
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.