Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
We study polynomial-time approximation schemes (PTASes) for constraint satisfaction problems (CSPs) such as Maximum Independent Set or Minimum Vertex Cover on sparse graph classes. Baker’s approach gives a PTAS on planar graphs, excluded-minor classes, and beyond. For Max-CSPs, and even more generally, maximisation finite-valued CSPs (where constraints are arbitrary non-negative functions), Romero, Wrochna, and Živný [SODA’21] showed that the Sherali-Adams LP relaxation gives a simple PTAS for all fractionally-treewidth-fragile classes, which is the most general “sparsity” condition for which a PTAS is known. We extend these results to general-valued CSPs, which include “crisp” (or “strict”) constraints that have to be satisfied by every feasible assignment. The only condition on the crisp constraints is that their domain contains an element that is at least as feasible as all the others (but possibly less valuable).For minimisation general-valued CSPs with crisp constraints, we present a PTAS for all Baker graph classes—a definition by Dvořák [SODA’20] that encompasses all classes where Baker’s technique is known to work, except for fractionally-treewidth-fragile classes. While this is standard for problems satisfying a certain monotonicity condition on crisp constraints, we show this can be relaxed to diagonalisability—a property of relational structures connected to logics, statistical physics, and random CSPs.
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Mar 9, 2023
Keywords: Constraint satisfaction
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.