Access the full text.
Sign up today, get DeepDyve free for 14 days.
We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results.1 (1) MLP circuits are superpolynomially stronger than monotone Boolean circuits. (2) MLP circuits are exponentially stronger than monotone span programs over the reals. (3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for mixed Lovász-Schrijver proof systems. (4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension complexity of polytopes.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Jul 20, 2019
Keywords: Lovász-Schrijver proof systems
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.