Access the full text.
Sign up today, get DeepDyve free for 14 days.
Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detection may require uploading a large amount of data and suffer from long network delay, while edge-based schemes do not adequately consider the detection requirement and thus cannot provide flexible and optimal performance. To solve these problems, we study a cloud-edge based hybrid smart grid fault detection system. Embedded devices are placed at the edge of the monitored equipment with several lightweight neural networks for fault detection. Considering limited communication resources, relatively low computation capabilities of edge devices, and different monitoring accuracies supported by these neural networks, we design an optimal communication and computational resource allocation method for this cloud-edge based smart grid fault detection system. Our method can maximize the processing throughput of the system and improve resource utilization while satisfying the data transmission and processing latency requirements. Extensive simulations are conducted and the results show the superiority of the proposed scheme over comparison schemes. We have also prototyped this system and verified its feasibility and performance in real-world scenarios.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Aug 24, 2022
Keywords: Smart grid
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.