Access the full text.
Sign up today, get DeepDyve free for 14 days.
When simulating a complex stochastic system, the behavior of output response depends on input parameters estimated from finite real-world data, and the finiteness of data brings input uncertainty into the system. The quantification of the impact of input uncertainty on output response has been extensively studied. Most of the existing literature focuses on providing inferences on the mean response at the true but unknown input parameter, including point estimation and confidence interval construction. Risk quantification of mean response under input uncertainty often plays an important role in system evaluation and control, because it provides inferences on extreme scenarios of mean response in all possible input models. To the best of our knowledge, it has rarely been systematically studied in the literature. In this article, first we introduce risk measures of mean response under input uncertainty and propose a nested Monte Carlo simulation approach to estimate them. Then we develop asymptotical properties such as consistency and asymptotic normality for the proposed nested risk estimators. We further study the associated budget allocation problem for efficient nested risk simulation and finally use a sharing economy example to illustrate the importance of accessing and controlling risk due to input uncertainty.
ACM Transactions on Modeling and Computer Simulation (TOMACS) – Association for Computing Machinery
Published: Feb 5, 2020
Keywords: Input uncertainty
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.