Access the full text.
Sign up today, get DeepDyve free for 14 days.
Many distributed monitoring applications of Wireless Sensor Networks (WSNs) require the location information of a sensor node. In this article, we address the problem of enabling nodes of Wireless Sensor Networks to determine their location in an untrusted environment, known as the secure localization problem. We propose a novel range-independent localization algorithm called SeRLoc that is well suited to a resource constrained environment such as a WSN. SeRLoc is a distributed algorithm based on a two-tier network architecture that allows sensors to passively determine their location without interacting with other sensors. We show that SeRLoc is robust against known attacks on a WSNs such as the wormhole attack , the Sybil attack , and compromise of network entities and analytically compute the probability of success for each attack. We also compare the performance of SeRLoc with state-of-the-art range-independent localization schemes and show that SeRLoc has better performance.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Aug 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.