Access the full text.
Sign up today, get DeepDyve free for 14 days.
Subset Sumand k-SAT are two of the most extensively studied problems in computer science, and conjectures about their hardness are among the cornerstones of fine-grained complexity. An important open problem in this area is to base the hardness of one of these problems on the other.Our main result is a tight reduction from k-SAT to Subset Sum on dense instances, proving that Bellman’s 1962 pseudo-polynomial O*(T)-time algorithm for Subset Sum on n numbers and target T cannot be improved to time T1-ε · 2o(n) for any ε > 0, unless the Strong Exponential Time Hypothesis (SETH) fails.As a corollary, we prove a “Direct-OR” theorem for Subset Sum under SETH, offering a new tool for proving conditional lower bounds: It is now possible to assume that deciding whether one out of N given instances of Subset Sum is a YES instance requires time (N T)1-o(1). As an application of this corollary, we prove a tight SETH-based lower bound for the classical Bicriteria s,t-Path problem, which is extensively studied in Operations Research. We separate its complexity from that of Subset Sum: On graphs with m edges and edge lengths bounded by L, we show that the O(Lm) pseudo-polynomial time algorithm by Joksch from 1966 cannot be improved to Õ(L + m), in contrast to a recent improvement for Subset Sum (Bringmann, SODA 2017).
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Jan 22, 2022
Keywords: Subset sum
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.