Access the full text.
Sign up today, get DeepDyve free for 14 days.
Smoothed analysis is a new way of analyzing algorithms introduced by Spielman and Teng. Classical methods like worst-case or average-case analysis have accompanying complexity classes, such as P and Avg-P, respectively. Whereas worst-case or average-case analysis give us a means to talk about the running time of a particular algorithm, complexity classes allow us to talk about the inherent difficulty of problems. Smoothed analysis is a hybrid of worst-case and average-case analysis and compensates some of their drawbacks. Despite its success for the analysis of single algorithms and problems, there is no embedding of smoothed analysis into computational complexity theory, which is necessary to classify problems according to their intrinsic difficulty. We propose a framework for smoothed complexity theory, define the relevant classes, and prove some first hardness results (of bounded halting and tiling) and tractability results (binary optimization problems, graph coloring, satisfiability) within this framework.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: May 11, 2015
Keywords: Smoothed analysis
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.