Access the full text.
Sign up today, get DeepDyve free for 14 days.
Smoothed Functional Algorithms for Stochastic Optimization Using q -Gaussian Distributions DEBARGHYA GHOSHDASTIDAR, AMBEDKAR DUKKIPATI, and SHALABH BHATNAGAR, Indian Institute of Science Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, especially when the objective is to improve the performance of a stochastic system. However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in the literature, which include Gaussian, Cauchy, and uniform distributions, among others. This article studies a new class of kernels based on the q-Gaussian distribution, which has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with a projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also
ACM Transactions on Modeling and Computer Simulation (TOMACS) – Association for Computing Machinery
Published: May 2, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.