Access the full text.
Sign up today, get DeepDyve free for 14 days.
The edit operation that contracts edges, which is a fundamental operation in the theory of graph minors, has recently gained substantial scientific attention from the viewpoint of Parameterized Complexity. In this article, we examine an important family of graphs, namely, the family of split graphs, which in the context of edge contractions is proven to be significantly less obedient than one might expect. Formally, given a graph G and an integer k, SPLIT CONTRACTION asks whether there exists X E(G) such that G/X is a split graph and |X| k. Here, G/X is the graph obtained from G by contracting edges in X. Guo and Cai [Theoretical Computer Science, 2015] claimed that SPLIT CONTRACTION is fixed-parameter tractable. However, our findings are different. We show that SPLIT CONTRACTION, despite its deceptive simplicity, is W[1]-hard. Our main result establishes the following conditional lower bound: Under the Exponential Time Hypothesis, SPLIT CONTRACTION cannot be solved in time 2o(2) nO(1), where is the vertex cover number of the input graph. We also verify that this lower bound is essentially tight. To the best of our knowledge, this is the first tight lower bound of the form 2o(2) nO(1) for problems parameterized by the vertex cover number of the input graph. In particular, our approach to obtain this lower bound borrows the notion of harmonious coloring from Graph Theory, and might be of independent interest.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: May 31, 2019
Keywords: Split contraction
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.