Access the full text.
Sign up today, get DeepDyve free for 14 days.
SummerTime seeks to summarize global time-series signals and provides a fixed-length, robust representation of the variable-length time series. Many machine learning methods depend on data instances with a fixed number of features. As a result, those methods cannot be directly applied to variable-length time series data. Existing methods such as sliding windows can lose minority local information. Summarization conducted by the SummerTime method will be a fixed-length feature vector which can be used in place of the time series dataset for use with classical machine learning methods. We use Gaussian Mixture models (GMM) over small same-length disjoint windows in the time series to group local data into clusters. The time series’ rate of membership for each cluster will be a feature in the summarization. By making use of variational methods, GMM converges to a more robust mixture, meaning the clusters are more resistant to noise and overfitting. Further, the model is naturally capable of converging to an appropriate cluster count. We validate our method on a challenging real-world dataset, an imbalanced physical activity dataset with a variable-length time series structure. We compare our results to state-of-the-art studies and show high-quality improvement by classifying with only the summarization.
ACM Transactions on Computing for Healthcare (HEALTH) – Association for Computing Machinery
Published: Dec 7, 2022
Keywords: Time series
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.