Access the full text.
Sign up today, get DeepDyve free for 14 days.
We show that the Simplex Method, the Network Simplex Method—both with Dantzig’s original pivot rule—and the Successive Shortest Path Algorithm are NP-mighty. That is, each of these algorithms can be used to solve, with polynomial overhead, any problem in NP implicitly during the algorithm’s execution. This result casts a more favorable light on these algorithms’ exponential worst-case running times. Furthermore, as a consequence of our approach, we obtain several novel hardness results. For example, for a given input to the Simplex Algorithm, deciding whether a given variable ever enters the basis during the algorithm’s execution and determining the number of iterations needed are both NP-hard problems. Finally, we close a long-standing open problem in the area of network flows over time by showing that earliest arrival flows are NP-hard to obtain.
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Nov 16, 2018
Keywords: NP-mightiness
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.