Access the full text.
Sign up today, get DeepDyve free for 14 days.
Most sensor network research and software design has been guided by an architectural principle that permits multinode data fusion on small-form-factor, resource-poor nodes, or motes . While we were among the earliest promoters of this approach, through experience we found that this principle leads to fragile and unmanageable systems and explore an alternative. The Tenet architecture is motivated by the observation that future large-scale sensor network deployments will be tiered , consisting of motes in the lower tier and masters , relatively unconstrained 32-bit platform nodes, in the upper tier. Tenet constrains multinode fusion to the master tier while allowing motes to process locally-generated sensor data. This simplifies application development and allows mote-tier software to be reused. Applications running on masters task motes by composing task descriptions from a novel tasklet library. Our Tenet implementation also contains a robust and scalable networking subsystem for disseminating tasks and reliably delivering responses. We show that a Tenet pursuit-evasion application exhibits performance comparable to a mote-native implementation while being considerably more compact. We also present two real-world deployments of Tenet system: a structural vibration monitoring application at Vincent Thomas Bridge and an imaging-based habitat monitoring application at James Reserve, and show that tiered architecture scales network capacity and allows reliable delivery of high rate data. 1
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Jul 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.