Access the full text.
Sign up today, get DeepDyve free for 14 days.
We propose a method for estimating the variance parameter of a discrete, stationary stochastic process that involves combining variance estimators at different run lengths using linear regression. We show that the estimator thus obtained is first-order unbiased and consistent under two distinct asymptotic regimes. In the first regime, the number of constituent estimators used in the regression is fixed and the numbers of observations corresponding to the component estimators grow in a proportional manner. In the second regime, the number of constituent estimators grows while the numbers of observations corresponding to each estimator remain fixed. We also show that for m-dependent stochastic processes, one can use regression to obtain asymptotically normally distributed variance estimators in the second regime. Analytical and numerical examples indicate that the new regression-based estimators give good mean-squared-error performance in steady-state simulations. The regression methodology presented in this article can also be applied to estimate the bias of variance estimators. As an example application, we present a new sequential-stopping rule that uses the estimate for bias to determine appropriate run lengths. Monte Carlo experiments indicate that this bias-controlling sequential-stopping method has the potential to work well in practice.
ACM Transactions on Modeling and Computer Simulation (TOMACS) – Association for Computing Machinery
Published: Feb 1, 2014
Keywords: Stationary processes
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.