Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Milker-Zabel, A. Bois, M. Henze, P. Huber, D. Schulz‐Ertner, A. Hoess, U. Haberkorn, J. Debus (2006)
Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET.International journal of radiation oncology, biology, physics, 65 1
J. Jonsson, M. Karlsson, M. Karlsson, T. Nyholm (2010)
Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regionsRadiation Oncology (London, England), 5
R. Graf, Fonyuy Nyuyki, I. Steffen, R. Michel, D. Fahdt, P. Wust, W. Brenner, V. Budach, R. Wurm, M. Plotkin (2013)
Contribution of 68Ga-DOTATOC PET/CT to target volume delineation of skull base meningiomas treated with stereotactic radiation therapy.International journal of radiation oncology, biology, physics, 85 1
A. Grosu, W. Weber, M. Franz, S. Stärk, M. Piert, R. Thamm, H. Gumprecht, M. Schwaiger, M. Molls, C. Nieder (2004)
Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy.International journal of radiation oncology, biology, physics, 63 2
A. Thornton, H. Sandler, R. Haken, D. McShan, B. Fraass, M. Lavigne, B. Yanks (1992)
The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms.International journal of radiation oncology, biology, physics, 24 4
F. Bénard, J. Romsa, R. Hustinx (2003)
Imaging gliomas with positron emission tomography and single-photon emission computed tomography.Seminars in nuclear medicine, 33 2
Damien Weber, Damien Weber, Hui Wang, S. Albrecht, Mahmut Ozsahin, E. Tkachuk, M. Rouzaud, P. Nouet, G. Dipasquale (2008)
Open low-field magnetic resonance imaging for target definition, dose calculations and set-up verification during three-dimensional CRT for glioblastoma multiforme.Clinical oncology (Royal College of Radiologists (Great Britain)), 20 2
R. Graf, M. Plotkin, I. Steffen, R. Wurm, P. Wust, W. Brenner, V. Budach, H. Badakhshi (2012)
Magnetic resonance imaging, computed tomography, and 68Ga-DOTATOC positron emission tomography for imaging skull base meningiomas with infracranial extension treated with stereotactic radiotherapy - a case seriesHead & Face Medicine, 8
S. Leibfarth, D. Mönnich, S. Welz, Christine Siegel, N. Schwenzer, H. Schmidt, D. Zips, D. Thorwarth (2013)
A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planningActa Oncologica, 52
B. Stall, L. Zach, H. Ning, John Ondos, B. Arora, U. Shankavaram, Robert Miller, D. Citrin, K. Camphausen (2008)
Comparison of T2 and FLAIR imaging for target delineation in high grade gliomasRadiation Oncology (London, England), 5
L. Oliveira, P. Marques (2000)
Coregistration of brain single-positron emission computed tomography and magnetic resonance images using anatomical features.Journal of digital imaging, 13 2 Suppl 1
C. Weltens, J. Menten, M. Feron, E. Bellon, P. Demaerel, F. Maes, W. Bogaert, E. Schueren (2001)
Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging.Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 60 1
D. Thorwarth, A. Schaefer (2010)
Functional target volume delineation for radiation therapy on the basis of positron emission tomography and the correlation with histopathology.The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of..., 54 5
N. Burnet, S. Thomas, K. Burton, S. Jefferies (2004)
Defining the tumour and target volumes for radiotherapyCancer Imaging, 4
A. Beavis, P. Gibbs, R. Dealey, V. Whitton (1998)
Radiotherapy treatment planning of brain tumours using MRI alone.The British journal of radiology, 71 845
B. Stall, L. Zach, H. Ning, John Ondos, B. Arora, U. Shankavaram, Robert Miller, D. Citrin, K. Camphausen (2010)
Comparison of T 2 and FLAIR imaging for target delineation in high grade gliomas
J. Rosenman, E. Miller, G. Tracton, T. Cullip (1998)
Image registration: an essential part of radiation therapy treatment planning.International journal of radiation oncology, biology, physics, 40 1
(2012)
Cochrane collaboration open learning material
D. Thorwarth, X. Geets, M. Paiusco (2010)
Physical radiotherapy treatment planning based on functional PET/CT data.Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 96 3
D. Thorwarth, G. Henke, A. Müller, M. Reimold, T. Beyer, A. Boss, A. Kolb, B. Pichler, C. Pfannenberg (2011)
Simultaneous 68Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience.International journal of radiation oncology, biology, physics, 81 1
V. Khoo, E. Adams, F. Saran, J. Bedford, J. Perks, A. Warrington, M. Brada (2000)
A Comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas.International journal of radiation oncology, biology, physics, 46 5
M. Moerland, R. Beersma, R. Bhagwandien, H. Wijrdeman, C. Bakker (1995)
Analysis and correction of geometric distortions in 1.5 T magnetic resonance images for use in radiotherapy treatment planning.Physics in medicine and biology, 40 10
G. Mazzara, R. Velthuizen, J. Pearlman, H. Greenberg, H. Wagner (2004)
Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.International journal of radiation oncology, biology, physics, 59 1
R. Krempien, K. Schubert, D. Zierhut, M. Steckner, M. Treiber, W. Harms, U. Mende, D. Latz, M. Wannenmacher, F. Wenz (2002)
Open low-field magnetic resonance imaging in radiation therapy treatment planning.International journal of radiation oncology, biology, physics, 53 5
B. Yanke, R. Haken, A. Aisen, B. Fraass, A. Thornton (1991)
Design of MRI scan protocols for use in 3-D, CT-based treatment planning.Medical dosimetry : official journal of the American Association of Medical Dosimetrists, 16 4
D. Rajasekar, N. Datta, Rakesh Gupta, P. Pradhan, S. Ayyagari (2000)
Multimodality image fusion in dose escalation studies of brain tumorsJournal of Applied Clinical Medical Physics, 4
B. Kristensen, F. Laursen, V. Løgager, P. Geertsen, A. Krarup-Hansen (2008)
Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours.Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 87 1
J. Ferlay, Hai-rim Shin, F. Bray, D. Forman, C. Mathers, D. Parkin (2010)
Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008International Journal of Cancer, 127
R. Haken, A. Thornton, H. Sandler, M. Lavigne, D. Quint, B. Fraass, M. Kessler, D. McShan (1992)
A quantitative assessment of the addition of MRI to CT-based, 3-D treatment planning of brain tumors.Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 25 2
(1988)
Statistical Power Analysis for Behavioural Sciences, 2nd edition
Barbara Gehler, Frank Paulsen, Mehmet Öksüz, Till-Karsten Hauser, S. Eschmann, Roland Bares, Christina Pfannenberg, Michael Bamberg, Peter Bartenstein, Claus Belka, Ute Ganswindt (2009)
[68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planningRadiation Oncology (London, England), 4
A. Liberati, D. Altman, J. Tetzlaff, C. Mulrow, P. Gøtzsche, J. Ioannidis, M. Clarke, P. Devereaux, J. Kleijnen, D. Moher (2009)
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaborationThe BMJ, 339
D. Thorwarth, A. Müller, C. Pfannenberg, T. Beyer (2013)
Combined PET/MR imaging using (68)Ga-DOTATOC for radiotherapy treatment planning in meningioma patients.Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 194
Fonyuy Nyuyki, M. Plotkin, R. Graf, R. Michel, I. Steffen, T. Denecke, L. Geworski, D. Fahdt, W. Brenner, R. Wurm (2010)
Potential impact of 68Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomasEuropean Journal of Nuclear Medicine and Molecular Imaging, 37
J. Lattanzi, D. Fein, S. McNeeley, A. Shaer, B. Movsas, G. Hanks (1997)
Computed tomography-magnetic resonance image fusion: a clinical evaluation of an innovative approach for improved tumor localization in primary central nervous system lesions.Radiation oncology investigations, 5 4
M. Just, H. Rösler, H. Higer, J. Kutzner, M. Thelen (1991)
MRI-assisted radiation therapy planning of brain tumors--clinical experiences in 17 patients.Magnetic resonance imaging, 9 2
V. Khoo, D. Dearnaley, D. Finnigan, A. Padhani, S. Tanner, M. Leach (1997)
Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning.Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 42 1
T. Stanescu, H. Jans, N. Pervez, Pavel Stavrev, B. Fallone (2008)
A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesionsPhysics in Medicine & Biology, 53
R. Prabhakar, P. Julka, T. Ganesh, A. Munshi, R. Joshi, G. Rath (2007)
Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors.Japanese journal of clinical oncology, 37 6
J. Rosenman (2001)
Incorporating functional imaging information into radiation treatment.Seminars in radiation oncology, 11 1
N. Datta, R. David, Rakesh Gupta, P. Lal (2008)
Implications of contrast-enhanced CT-based and MRI-based target volume delineations in radiotherapy treatment planning for brain tumors.Journal of cancer research and therapeutics, 4 1
S. Dević (2012)
MRI simulation for radiotherapy treatment planning.Medical physics, 39 11
C. Soler, P. Beauchesne, K. Maatougui, T. Schmitt, F. Barral, D. Michel, F. Dubois, J. Brunon (1998)
Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapyEuropean Journal of Nuclear Medicine, 25
E. Tacconelli (2010)
Systematic reviews: CRD's guidance for undertaking reviews in health careLancet Infectious Diseases, 10
M. Krengli, G. Loi, G. Sacchetti, I. Manfredda, G. Gambaro, M. Brambilla, A. Carriero, E. Inglese (2007)
Delineation of Target Volume for Radiotherapy of High-Grade Gliomas by 99mTc-MIBI SPECT and MRI FusionStrahlentherapie und Onkologie, 183
Tania Huedo-Medina, J. Sánchez-Meca, Fulgencio Marín-Martínez, J. Botella (2006)
Assessing heterogeneity in meta-analysis: Q statistic or I2 index?Psychological methods, 11 2
K. Sultanem, H. Patrocinio, C. Lambert, R. Corns, R. Leblanc, W. Parker, G. Shenouda, L. Souhami (2004)
The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.International journal of radiation oncology, biology, physics, 58 1
R. Prabhakar, K. Haresh, T. Ganesh, R. Joshi, P. Julka, G. Rath (2007)
Comparison of computed tomography and magnetic resonance based target volume in brain tumors.Journal of cancer research and therapeutics, 3 2
A. Fiorentino, R. Caivano, P. Pedicini, V. Fusco (2013)
Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomographyClinical and Translational Oncology, 15
AbstractPurposeThe aim of this study is to establish clinical evidence regarding the use of magnetic resonance imaging (MRI) in target volume definition for radiotherapy treatment planning of brain tumours.MethodsPrimary studies were systematically retrieved from six electronic databases and other sources. Studies included were only those that quantitatively compared computed tomography (CT) and MRI in target volume definition for radiotherapy of brain tumours. Study characteristics and quality were assessed and the data were extracted from eligible studies. Effect estimates for each study was computed as mean percentage difference based on individual patient data where available. The included studies were then combined in meta-analysis using Review Manager (RevMan) software version 5.0.ResultFive studies with a total number of 72 patients were included in this review. The quality of the studies was rated strong. The percentages mean differences of the studies were 7·47, 11·36, 30·70, 41·69 and −24·6% using CT as the baseline. The result of statistical analysis showed small-to-moderate heterogeneity; τ 2=36·8; χ 2=6·23; df=4 (p=0·18); I 2=36%. The overall effect estimate was −1·85 [95% confidence interval (CI); −7·24, 10·94], Z=0·40 (p=0·069>0·5).ConclusionBrain tumour volumes measured using MRI-based method for radiotherapy treatment planning were larger compared with CT defined volumes but the difference lacks statistical significance.
Journal of Radiotherapy in Practice – Cambridge University Press
Published: Dec 11, 2017
Keywords: brain tumours; computed tomography; magnetic resonance imaging; meta-analysis; radiotherapy treatment planning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.