Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Messager, B. Lehner, G. Grill, I. Nedeva, Oliver Schmitt (2016)
Estimating the volume and age of water stored in global lakes using a geo-statistical approachNature Communications, 7
(1996)
A review of the geology of East Antarctica, with special reference to the c. 1000 Ma and c. 500 Ma events
Y. Martos, M. Catalán, T. Jordan, A. Golynsky, Dmitry Golynsky, G. Eagles, D. Vaughan (2017)
Heat Flux Distribution of Antarctica UnveiledGeophysical Research Letters, 44
R. Maguire, N. Schmerr, E. Pettit, K. Riverman, Chris Gardner, D. DellaGiustina, B. Avenson, N. Wagner, A. Marusiak, N. Habib, J. Broadbeck, V. Bray, Hop Bailey (2020)
Geophysical constraints on the properties of a subglacial lake in northwest GreenlandThe Cryosphere
S. Palmer, J. Dowdeswell, P. Christoffersen, D. Young, D. Blankenship, J. Greenbaum, T. Benham, J. Bamber, M. Siegert (2013)
Greenland subglacial lakes detected by radarGeophysical Research Letters, 40
C. Veen, T. Leftwich, R. Frese, B. Csathó, J. Li (2007)
Subglacial topography and geothermal heat flux: Potential interactions with drainage of the Greenland ice sheetGeophysical Research Letters, 34
Tobias Stål, A. Reading, J. Halpin, J. Whittaker (2021)
Antarctic Geothermal Heat Flow Model: Aq1Geochemistry, 22
E. Mackie, D. Schroeder, J. Caers, M. Siegfried, C. Scheidt (2020)
Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial LakesJournal of Geophysical Research: Earth Surface, 125
M. Siegert (2000)
Antarctic subglacial lakesEarth-Science Reviews, 50
J. Behrendt (1999)
Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations — a reviewGlobal and Planetary Change, 23
E. Magnússon, F. Pálsson, M. Gudmundsson, Thórdís Högnadóttir, C. Rossi, T. Thorsteinsson, B. Ófeigsson, E. Sturkell, T. Jóhannesson (2021)
Development of a subglacial lake monitored with radio-echo sounding: Case study from the Eastern Skaftá Cauldron in the Vatnajökull ice cap, IcelandThe Cryosphere
C. Maule, M. Purucker, N. Olsen, K. Mosegaard (2005)
Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic DataScience, 309
Ching-Yao Lai, L. Stevens, Danielle Chase, T. Creyts, M. Behn, Sarah Das, H. Stone (2021)
Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainagesNature Communications, 12
S. Evans, B. Smith (1970)
Radio echo exploration of the Antarctic ice sheet, 1969–70Polar Record, 15
M. Siegert, B. Kulessa, M. Bougamont, P. Christoffersen, K. Key, Kristoffer Andersen, A. Booth, A. Smith (2017)
Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flowSpecial Publications, 461
S. Livingstone, Yan Li, A. Rutishauser, Rebecca Sanderson, K. Winter, J. Mikucki, H. Björnsson, Jade Bowling, W. Chu, C. Dow, H. Fricker, M. McMillan, F. Ng, N. Ross, M. Siegert, M. Siegfried, A. Sole (2022)
Subglacial lakes and their changing role in a warming climateNature Reviews Earth & Environment, 3
M. Siegert, J. Ellis-Evans, M. Tranter, C. Mayer, J. Petit, A. Salamatin, J. Priscu (2001)
Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakesNature, 414
D. Hasterok, J. Webb (2017)
On the radiogenic heat production of igneous rocksGeoscience frontiers, 8
L. Couston, M. Siegert (2021)
Dynamic flows create potentially habitable conditions in Antarctic subglacial lakesScience Advances, 7
D. Hasterok, D. Chapman (2011)
Heat production and geotherms for the continental lithosphereEarth and Planetary Science Letters, 307
W. Shen, D. Wiens, A. Lloyd, A. Nyblade (2020)
A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic StructureGeophysical Research Letters, 47
(2021)
Review of Manuscript TC-2021-65: Development of a subglacial lake monitored with radio- echo sounding: Case study from the Eastern Skaftá Cauldron in the Vatnajökull ice cap, Iceland
S. Jennings, D. Hasterok, J. Payne (2019)
A new compositionally based thermal conductivity model for plutonic rocksGeophysical Journal International
F. Pattyn, S. Carter, M. Thoma (2016)
Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheetPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374
G. Oswald, G. Robin (1973)
Lakes Beneath the Antarctic Ice SheetNature, 245
S. Goeller, D. Steinhage, M. Thoma, K. Grosfeld (2015)
Assessing the subglacial lake coverage of AntarcticaAnnals of Glaciology, 57
M. Morlighem, E. Rignot, T. Binder, D. Blankenship, R. Drews, G. Eagles, O. Eisen, F. Ferraccioli, R. Forsberg, P. Fretwell, Vikram Goel, J. Greenbaum, Hilmar Gudmundsson, Jingxue Guo, V. Helm, C. Hofstede, I. Howat, A. Humbert, W. Jokat, N. Karlsson, Won Lee, K. Matsuoka, R. Millan, J. Mouginot, J. Paden, F. Pattyn, J. Roberts, S. Rosier, A. Ruppel, H. Seroussi, Emma Smith, D. Steinhage, Bo Sun, M. Broeke, T. Ommen, M. Wessem, D. Young (2019)
Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheetNature Geoscience, 13
L. Stearns, Ben Smith, G. Hamilton (2008)
Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floodsNature Geoscience, 1
N. Shapiro, M. Ritzwoller (2004)
Inferring surface heat flux distributions guided by a global seismic model: particular application to AntarcticaEarth and Planetary Science Letters, 223
A. Wright, D. Young, J. Roberts, D. Schroeder, J. Bamber, J. Dowdeswell, N. Young, A. Brocq, R. Warner, A. Payne, D. Blankenship, T. Ommen, M. Siegert (2012)
Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East AntarcticaJournal of Geophysical Research, 117
J. Wessem, C. Reijmer, J. Lenaerts, W. Berg, M. Broeke, E. Meijgaard (2014)
Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of AntarcticaThe Cryosphere, 8
S. Willcocks, D. Hasterok, S. Jennings (2021)
Thermal refraction: implications for subglacial heat fluxJournal of Glaciology, 67
H. Fricker, T. Scambos, R. Bindschadler, L. Padman (2007)
An Active Subglacial Water System in West Antarctica Mapped from SpaceScience, 315
E. Wolff, C. Doake (1986)
Implications of the form of the Flow Law for Vertical Velocity and Age–Depth Profiles in Polar IceJournal of Glaciology, 32
M. Gard, D. Hasterok (2021)
A global Curie depth model utilising the equivalent source magnetic dipole methodPhysics of the Earth and Planetary Interiors, 313
J. Mareschal, C. Jaupart (2013)
Radiogenic heat production, thermal regime and evolution of continental crustTectonophysics, 609
K. Walsh (1998)
Antarctic Meteorology and ClimatologyEos, Transactions American Geophysical Union, 79
A. Baranov, R. Tenzer, M. Bagherbandi (2017)
Combined Gravimetric–Seismic Crustal Model for AntarcticaSurveys in Geophysics, 39
A. Pollett, D. Hasterok, T. Raimondo, J. Halpin, M. Hand, B. Bendall, S. McLaren (2019)
Heat Flow in Southern Australia and Connections With East AntarcticaGeochemistry, 20
S. Thatje, Alastair Brown, C. Hillenbrand (2019)
Prospects for metazoan life in sub-glacial Antarctic lakes: the most extreme life on Earth?International Journal of Astrobiology, 18
Andrew Wright, M. Siegert (2012)
A fourth inventory of Antarctic subglacial lakesAntarctic Science, 24
S. Guimarães, F. Vieira, V. Hamza (2020)
Heat flow variations in the Antarctic Continent, 3
H. Horgan, S. Anandakrishnan, R. Jacobel, K. Christianson, R. Alley, D. Heeszel, S. Picotti, J. Walter (2012)
Subglacial Lake Whillans — Seismic observations of a shallow active reservoir beneath a West Antarctic ice streamEarth and Planetary Science Letters, 331
S. Goes, D. Hasterok, D. Schutt, M. Klöcking (2020)
Continental lithospheric temperatures: A reviewPhysics of the Earth and Planetary Interiors, 306
D. Schroeder, D. Blankenship, D. Young, E. Quartini (2014)
Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice SheetProceedings of the National Academy of Sciences, 111
T. Jordan, T. Riley, C. Siddoway (2020)
The geological history and evolution of West AntarcticaNature Reviews Earth & Environment, 1
(1970)
MEaSUREs phase map of Antarctic ice velocity, version 1
L. Gray, I. Joughin, S. Tulaczyk, V. Spikes, R. Bindschadler, K. Jezek (2004)
Evidence for subglacial water transport in the West Antarctic Ice Sheet through three‐dimensional satellite radar interferometryGeophysical Research Letters, 32
Laura Mony, J. Roberts, J. Halpin (2020)
Inferring geothermal heat flux from an ice-borehole temperature profile at Law Dome, East AntarcticaJournal of Glaciology
B. Christner, J. Priscu, Amanda Achberger, C. Barbante, S. Carter, K. Christianson, A. Michaud, J. Mikucki, A. Mitchell, M. Skidmore, T. Vick‐Majors (2014)
A microbial ecosystem beneath the West Antarctic ice sheetNature, 512
D. Hasterok, M. Gard (2016)
Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivityEarth and Planetary Science Letters, 450
D. Ashmore, R. Bingham (2014)
Antarctic subglacial hydrology: current knowledge and future challengesAntarctic Science, 26
R. Bell, M. Studinger, C. Shuman, M. Fahnestock, I. Joughin (2007)
Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streamsNature, 445
M. Llubes, Cédric Lanseau, F. Rémy (2006)
Relations between basal condition, subglacial hydrological networks and geothermal flux in AntarcticaEarth and Planetary Science Letters, 241
P. Fretwell, H. Pritchard, D. Vaughan, J. Bamber, N. Barrand, R. Bell, C. Bianchi, R. Bingham, D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. Cook, H. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. Griggs, R. Hindmarsh, P. Holmlund, J. Holt, R. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. Langley, G. Leitchenkov, C. Leuschen, B. Luyendyk, K. Matsuoka, J. Mouginot, F. Nitsche, Y. Nogi, O. Nøst, S. Popov, E. Rignot, D. Rippin, A. Rivera, J. Roberts, N. Ross, M. Siegert, A. Smith, D. Steinhage, M. Studinger, Bo Sun, B. Tinto, B. Welch, Douglas Wilson, D. Young, Cui Xiangbin, A. Zirizzotti (2012)
Bedmap2: improved ice bed, surface and thickness datasets for AntarcticaThe Cryosphere, 7
S. Carter, D. Blankenship, M. Peters, D. Young, J. Holt, D. Morse (2007)
Radar‐based subglacial lake classification in AntarcticaGeochemistry, 8
D. Hasterok, M. Gard, J. Webb (2017)
On the radiogenic heat production of metamorphic, igneous, and sedimentary rocksGeoscience Frontiers
S. Livingstone, C. Clark, J. Woodward, J. Kingslake (2013)
Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheetsThe Cryosphere, 7
V. Rodriguez-Galiano, M. Sánchez-Castillo, M. Chica-Olmo, M. Chica-Rivas (2015)
Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machinesOre Geology Reviews, 71
A. Humbert, D. Steinhage, V. Helm, S. Beyer, T. Kleiner (2018)
Missing Evidence of Widespread Subglacial Lakes at Recovery Glacier, AntarcticaJournal of Geophysical Research: Earth Surface, 123
H. Fricker, M. Siegfried, S. Carter, T. Scambos (2016)
A decade of progress in observing and modelling Antarctic subglacial water systemsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374
M. An, D. Wiens, Yue Zhao, M. Feng, A. Nyblade, M. Kanao, Yuansheng Li, A. Maggi, J. Lévêque (2015)
S‐velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh wavesJournal of Geophysical Research: Solid Earth, 120
E. Gudlaugsson, A. Humbert, T. Kleiner, J. Kohler, K. Andreassen (2015)
The influence of a model subglacial lake on ice dynamics and internal layeringThe Cryosphere, 10
Abstract Subglacial melt has important implications for ice-sheet dynamics. Locating and identifying subglacial lakes are expensive and time-consuming, requiring radar surveys or satellite methods. We explore three methods to identify source regions for lakes using seven continent-wide environmental characteristics that are sensitive to or influenced by ice-sheet temperature. A simple comparison of environmental properties at lake locations with their continent-wide distributions suggests a statistical relationship (high Kolmogorov-Smirnov statistic) between stable lake locations and ice thickness and surface temperatures, indicating melting under passive conditions. Active lakes, in contrast, show little correlation with direct thermally influenced parameters, instead exhibiting large statistical differences with horizontal velocity and bedrock elevation. More sophisticated techniques, including principal component analysis (PCA) and machine learning (ML) classification, provide better spatial identification of lake types. Positive PCA scores derived from the environmental characteristics correlate with stable lakes, whereas negative values correspond to active lakes. ML methods can also identify regions where subglacial lake melt sources are probable. While ML provides the most accurate classification maps, the combination of approaches adds deeper knowledge of the primary controls on lake formation and the environmental settings in which they are likely to be found.
Antarctic Science – Cambridge University Press
Published: Apr 1, 2023
Keywords: active lakes; machine learning; principal component analysis; subglacial lakes
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.