Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract We review the lithic microbial ecosystems of the McMurdo Dry Valleys as the main form of terrestrial colonization in this region, and assess the role of environmental controls such as temperature, solar radiation, water availability, wind, nutrient availability, salinity and the physicochemical properties of the colonized rock. Epilithic communities, especially those dominated by lichens, are able to withstand extreme environmental conditions but subsurface endolithic microhabitats provide more tolerant conditions. Endolithic microbial communities can be grouped into two main classes: eukaryotic communities (dominated by lichenized fungi and algae) and prokaryotic communities (dominated by cyanobacteria). Heterotrophic bacteria and non-lichenized algae and fungi (mainly black fungi) are also components of these communities. These lithobiontic microorganisms generally have effective mechanisms against freezing temperatures and desiccation. Extracellular polymeric substances play an important role not only in protecting microbial cells but also in community organization and in mitigating microenvironmental conditions. Antarctic lithobiontic communities are comprised of microbial consortia within which multiple interactions between the different biological and abiotic components are essential for microbial survival, whilst fossils and biomarkers provide evidence of earlier successful microbial life in Antarctic deserts. Finally, the uniqueness of the present lithobiont assemblages suggests they are the outcome of geographical isolation during the evolution of the continent and not merely the descendants of a subset of globally distributed taxa that have adapted to the extreme environmental conditions.
Antarctic Science – Cambridge University Press
Published: Jul 7, 2014
Keywords: endoliths; lichens; lithic microhabitat; lithobiontic microorganisms
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.