Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract An ocean bottom seismometer (OBS) network was deployed for 1 month at Deception Island volcano, Antarctica, in early 2005. Although only two volcano-tectonic and three long-period events were observed, the three OBSs located > 2 km apart inside the caldera detected over 3900 events that could not be attributed to known volcanic or hydrothermal sources. These events are found on one instrument at a time and occur in three types. Type 1 events resemble impulsive signals from biological organisms while type 2 and type 3 events resemble long-period seismicity. The largest number of events was observed in a region of volcanic resurgence and hydrothermal venting. All three types occur together suggesting a common cause and they show evidence for a diurnal distribution. The events are most likely to be due to aquatic animals striking the sensors, but a geological source is also possible. In the first case, these signals indicate the presence of a biological community confined to the caldera. In the second case, they imply widespread hydrothermal activity in Port Foster. Future OBS experiments should bury the seismometers, include a hydrophone, deploy instruments side-by-side, or include a video camera to distinguish between biological and geological events.
Antarctic Science – Cambridge University Press
Published: Nov 26, 2013
Keywords: biological signal; degassing; hydrothermal activity; undersea seismic network; volcanic seismology
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.