Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo

Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway... AbstractBreast cancer is one of the most common malignant tumors in women and it is the most frequently diagnosed cancer in the world. Ampelopsin (AMP) is a purified component from the root of Ampelopsis grossedentata. It is reported that AMP could significantly inhibit the proliferation of breast cancer cells. However, the antitumor mechanism against breast cancer has not yet been fully elucidated. The purpose of this work was to study the role of AMP against breast cancer MDA-MB-231 cells and to further investigate the underlying mechanism. PI3K/AKT/mTOR plays a very important role in tumor cell growth and proliferation and we hypothesize that AMP may inhibit this pathway. In the present work, the results showed that AMP could significantly inhibit the growth of breast cancer MDA-MB-231 cells in vitro and in vivo. In addition, treatment with AMP decreased the levels of PI3K, AKT and mTOR, as well as cyclin B1 expression, followed by p53/p21 pathway activation to arrest the cell cycle at G2/M. Moreover, it demonstrated a positive association between cyclin B1 and PI3K/AKT/mTOR levels. Importantly, this pathway was found to be regulated by cyclin B1 in MDA-MB-231 cells treated with AMP. Also, it was observed that cyclin B1 overexpression attenuated cell apoptosis and weakened the inhibitory effects of AMP on cell proliferation. Together, AMP could inhibit breast cancer MDA-MB-231 cell proliferation in vitro and in vivo, due to cell cycle arrest at G2/M by inactivating PI3K/AKT/mTOR pathway regulated by cyclin B1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Pharmaceutica de Gruyter

Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo

Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo

Acta Pharmaceutica , Volume 73 (1): 16 – Mar 1, 2023

Abstract

AbstractBreast cancer is one of the most common malignant tumors in women and it is the most frequently diagnosed cancer in the world. Ampelopsin (AMP) is a purified component from the root of Ampelopsis grossedentata. It is reported that AMP could significantly inhibit the proliferation of breast cancer cells. However, the antitumor mechanism against breast cancer has not yet been fully elucidated. The purpose of this work was to study the role of AMP against breast cancer MDA-MB-231 cells and to further investigate the underlying mechanism. PI3K/AKT/mTOR plays a very important role in tumor cell growth and proliferation and we hypothesize that AMP may inhibit this pathway. In the present work, the results showed that AMP could significantly inhibit the growth of breast cancer MDA-MB-231 cells in vitro and in vivo. In addition, treatment with AMP decreased the levels of PI3K, AKT and mTOR, as well as cyclin B1 expression, followed by p53/p21 pathway activation to arrest the cell cycle at G2/M. Moreover, it demonstrated a positive association between cyclin B1 and PI3K/AKT/mTOR levels. Importantly, this pathway was found to be regulated by cyclin B1 in MDA-MB-231 cells treated with AMP. Also, it was observed that cyclin B1 overexpression attenuated cell apoptosis and weakened the inhibitory effects of AMP on cell proliferation. Together, AMP could inhibit breast cancer MDA-MB-231 cell proliferation in vitro and in vivo, due to cell cycle arrest at G2/M by inactivating PI3K/AKT/mTOR pathway regulated by cyclin B1.

Loading next page...
 
/lp/de-gruyter/ampelopsin-induces-mda-mb-231-cell-cycle-arrest-through-cyclin-b1-6I9Ej5yzVl
Publisher
de Gruyter
Copyright
© 2023 Minjun Meng et al., published by Sciendo
ISSN
1846-9558
eISSN
1846-9558
DOI
10.2478/acph-2023-0005
Publisher site
See Article on Publisher Site

Abstract

AbstractBreast cancer is one of the most common malignant tumors in women and it is the most frequently diagnosed cancer in the world. Ampelopsin (AMP) is a purified component from the root of Ampelopsis grossedentata. It is reported that AMP could significantly inhibit the proliferation of breast cancer cells. However, the antitumor mechanism against breast cancer has not yet been fully elucidated. The purpose of this work was to study the role of AMP against breast cancer MDA-MB-231 cells and to further investigate the underlying mechanism. PI3K/AKT/mTOR plays a very important role in tumor cell growth and proliferation and we hypothesize that AMP may inhibit this pathway. In the present work, the results showed that AMP could significantly inhibit the growth of breast cancer MDA-MB-231 cells in vitro and in vivo. In addition, treatment with AMP decreased the levels of PI3K, AKT and mTOR, as well as cyclin B1 expression, followed by p53/p21 pathway activation to arrest the cell cycle at G2/M. Moreover, it demonstrated a positive association between cyclin B1 and PI3K/AKT/mTOR levels. Importantly, this pathway was found to be regulated by cyclin B1 in MDA-MB-231 cells treated with AMP. Also, it was observed that cyclin B1 overexpression attenuated cell apoptosis and weakened the inhibitory effects of AMP on cell proliferation. Together, AMP could inhibit breast cancer MDA-MB-231 cell proliferation in vitro and in vivo, due to cell cycle arrest at G2/M by inactivating PI3K/AKT/mTOR pathway regulated by cyclin B1.

Journal

Acta Pharmaceuticade Gruyter

Published: Mar 1, 2023

Keywords: PI3K/AKT/mTOR pathway; cyclin B1; breast cancer; cell cycle arrest; ampelopsin

There are no references for this article.