Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analysis and Variation of the Maiac Aerosol Optical Depth in Underexplored Urbanized Area of National Capital Region, India

Analysis and Variation of the Maiac Aerosol Optical Depth in Underexplored Urbanized Area of... AbstractAerosol monitoring is the emerging application field of satellite remote sensing. As a satellite-based indicator of aerosol concentration, aerosol optical depth (AOD) can aid in assessing the crucial effects of aerosols on the global environment. Among various satellite-based aerosol product, Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 (C6), Multiangle Implementation of Atmospheric Correction (MAIAC) aerosol product (1 km resolution) has still untapped potential in Indian regions. Considering the importance of regional validation of such high-resolution aerosol product, the present study attempts to fill this gap by validating MAIAC aerosol estimates (AODMAIAC) in highly polluted districts (Faridabad, Ghaziabad, Gautam Budh Nagar, Gurugram) of National Capital Region (NCR) with heavy aerosol loading using limited AErosol RObotic NETwork (AERONET) observations obtained from AERONET sites at Amity University (AU) and Gual Pahari (GP). Such evaluation of satellite-retrieved aerosol product with ground data confirms its practicality based on retrieval errors (Expected Error (EE) values (EE = 0.05 + 15 %*AOD) (EE: 78.85 % at AU, 73.58 % at GP), root mean square error (RMSE) values (RMSE: 0.15 at AU, 0.24 at GP), and correlation coefficient (R) values (R: 0.86 at AU, 0.73 at GP). The seasonal variation in AOD over the study area from 2010-2019 reveals increasing trend of AOD in the monsoon and post-monsoon season due to natural and anthropogenic factors. In addition to contributing to a holistic assessment of MAIAC aerosol estimates as a recent, high-resolution aerosol product, present results provide a basis for further research into NCR aerosols. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Landscape Ecology de Gruyter

Analysis and Variation of the Maiac Aerosol Optical Depth in Underexplored Urbanized Area of National Capital Region, India

Analysis and Variation of the Maiac Aerosol Optical Depth in Underexplored Urbanized Area of National Capital Region, India

Journal of Landscape Ecology , Volume 15 (3): 20 – Dec 1, 2022

Abstract

AbstractAerosol monitoring is the emerging application field of satellite remote sensing. As a satellite-based indicator of aerosol concentration, aerosol optical depth (AOD) can aid in assessing the crucial effects of aerosols on the global environment. Among various satellite-based aerosol product, Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 (C6), Multiangle Implementation of Atmospheric Correction (MAIAC) aerosol product (1 km resolution) has still untapped potential in Indian regions. Considering the importance of regional validation of such high-resolution aerosol product, the present study attempts to fill this gap by validating MAIAC aerosol estimates (AODMAIAC) in highly polluted districts (Faridabad, Ghaziabad, Gautam Budh Nagar, Gurugram) of National Capital Region (NCR) with heavy aerosol loading using limited AErosol RObotic NETwork (AERONET) observations obtained from AERONET sites at Amity University (AU) and Gual Pahari (GP). Such evaluation of satellite-retrieved aerosol product with ground data confirms its practicality based on retrieval errors (Expected Error (EE) values (EE = 0.05 + 15 %*AOD) (EE: 78.85 % at AU, 73.58 % at GP), root mean square error (RMSE) values (RMSE: 0.15 at AU, 0.24 at GP), and correlation coefficient (R) values (R: 0.86 at AU, 0.73 at GP). The seasonal variation in AOD over the study area from 2010-2019 reveals increasing trend of AOD in the monsoon and post-monsoon season due to natural and anthropogenic factors. In addition to contributing to a holistic assessment of MAIAC aerosol estimates as a recent, high-resolution aerosol product, present results provide a basis for further research into NCR aerosols.

Loading next page...
 
/lp/de-gruyter/analysis-and-variation-of-the-maiac-aerosol-optical-depth-in-0w39z0Fyyg
Publisher
de Gruyter
Copyright
© 2022 Vipasha Sharma et al., published by Sciendo
ISSN
1805-4196
eISSN
1805-4196
DOI
10.2478/jlecol-2022-0019
Publisher site
See Article on Publisher Site

Abstract

AbstractAerosol monitoring is the emerging application field of satellite remote sensing. As a satellite-based indicator of aerosol concentration, aerosol optical depth (AOD) can aid in assessing the crucial effects of aerosols on the global environment. Among various satellite-based aerosol product, Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 (C6), Multiangle Implementation of Atmospheric Correction (MAIAC) aerosol product (1 km resolution) has still untapped potential in Indian regions. Considering the importance of regional validation of such high-resolution aerosol product, the present study attempts to fill this gap by validating MAIAC aerosol estimates (AODMAIAC) in highly polluted districts (Faridabad, Ghaziabad, Gautam Budh Nagar, Gurugram) of National Capital Region (NCR) with heavy aerosol loading using limited AErosol RObotic NETwork (AERONET) observations obtained from AERONET sites at Amity University (AU) and Gual Pahari (GP). Such evaluation of satellite-retrieved aerosol product with ground data confirms its practicality based on retrieval errors (Expected Error (EE) values (EE = 0.05 + 15 %*AOD) (EE: 78.85 % at AU, 73.58 % at GP), root mean square error (RMSE) values (RMSE: 0.15 at AU, 0.24 at GP), and correlation coefficient (R) values (R: 0.86 at AU, 0.73 at GP). The seasonal variation in AOD over the study area from 2010-2019 reveals increasing trend of AOD in the monsoon and post-monsoon season due to natural and anthropogenic factors. In addition to contributing to a holistic assessment of MAIAC aerosol estimates as a recent, high-resolution aerosol product, present results provide a basis for further research into NCR aerosols.

Journal

Journal of Landscape Ecologyde Gruyter

Published: Dec 1, 2022

Keywords: MODIS; MAIAC; AOD; AERONET; NCR

There are no references for this article.