Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes

Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes ReferencesBabuponnusami, A. & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, pp. 557–572.Barreto-Rodriguesa, M., Silva, F.T. & Paiva, T.C.B. (2009). Optimization of Brazilian TNT industry wastewater treatment using combined zero-valent iron and Fenton processes, Journal of Hazardous Materials, 168, pp. 1065–1069.Bautitz, I.R., Velosa, A.C. & Nogueira, R.F.P. (2012). Zero valent iron mediated degradation of the pharmaceutical diazepam, Chemosphere, 88, pp. 688–692.Chang, M.C., Shu, H.Y., Yu, H.H. & Sung, Y.C. (2006). Reductive decolorization and total organic carbon reduction of the diazo dye CI Acid Black 24 by zero-valent iron powder, Journal of Chemical Technology and Biotechnology, 81, pp. 1259–1266.Cao, J., Wei, L., Hunag, Q., Wang, L. & Han, S. (1999). Reductive degradation of azo dye by zero valent iron in aqueous solution, Chemosphere, 38, pp. 565–571.Chen, J.L., Al-Abed, S.R., Ryan, J.A. & Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron, Journal of Hazardous Materials, 83, pp. 243–254.Deng, Y. & Englehardt, J.D. (2006). Treatment of landfill leachate by the Fenton process, Water Research, 40, pp. 3683–3694.Devi, L.G., Kumar, S.G., Reddy, K.M. & Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism, Journal of Hazardous Materials, 164, pp. 459–467.Dong, J., Zhao, Y., Zhao, R. & Zhou, R. (2010). Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron, Journal of Environmental Sciences, 22, pp. 1741–1747.Fan, J., Guo, Y., Wang, J. & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, Journal of Hazardous Materials, 166, pp. 904–910.Fateminia, F.S. & Falamaki, C. (2013). Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal, Process Safety and Environmental Protection, 91, pp. 304–310.Fjordbøge, A.S., Baun, A., Vastrup, T. & Kjeldsen, P. (2013). Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater, Chemosphere, 90, pp. 627–633.Gogate, P.R. & Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8, pp. 501–551.Grcic, I., Papic, S., Zizek, K. & Koprivanac, N. (2012). Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation, Chemical Engineering Journal, 195–196, pp. 77–90.Guides to Pollution Prevention. The Automotive Repair Industry. United States Environmental Protection Agency (1991). EPA/625/7-91/013.Kang, Y.W. & Hwang, K-Y. (2000). Effect of reaction conditions on the oxidation efficiency in the Fenton process, Water Research, 34, pp. 2786–2790.Kim, D., Kim, J. & Choi, W. (2011). Effect of magnetic field on the zero valent iron induced oxidation reaction, Journal of Hazardous Materials, 192, pp. 928–931.Lai, P., Zhao, H., Wang, C. & Ni, J. (2007). Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, Journal of Hazardous Materials, 147, pp. 232–239.Lau, I.W.C., Wang, P. & Fang, H.H.P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation, Journal of Environmental Engineering, 27, pp. 666–669.Makowska, M. & Mazurkiewicz, J. (2016). Treatment of wastewater from service areas at motorways, Archives of Environmental Protection, 42, (4), pp. 80–89.Marcinowski, P., Bogacki, J. & Naumczyk, J. (2014). Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes, Journal of Environmental Science and Health, Part A, 49, pp. 1531–1541.Martins, R.C., Nunesa, M., Gando-Ferreira, L.M. & Quinta-Ferreira, R.M. (2014). Nanofiltration and Fenton’s process over iron shavings for surfactants removal, Environmental Technology, 35, pp. 2380–2388.Moon, B.-H., Park, Y.-B. & Park, K.-H. (2011). Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron, Desalination, 268, pp. 249–252.Naumczyk, J., Prokurat, I. & Marcinowski, P. (2012). Landfill leachates treatment by H2O2/UV,O3/H2O2, modified Fenton and modified Photo-Fenton methods, International Journal of Photoenergy, DOI: 10.1155/2012/909157.Piecuch, T., Andriyevska, L., Dąbrowski, J., Dąbrowski, T., Juraszka, B. & Kowalczyk, A. (2015). Oczyszczanie ścieków ze stacji naprawy samochodów, Annual Set The Environment Protection, 17, pp. 814–832.Pourrezaei, P., Alpatova, A., Khosravi, K., Drzewicz, P., Chen, Y., Chelme-Ayala, P. & El-Din, M.G. (2014). Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke, Journal of Environmental Management, 139, pp. 50–58.Rozporządzenie Ministra Środowiska, Dziennik Ustaw z dnia 18 listopada 2014 r. Poz. 1800, w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego.Rubio-Clemente, A., Torres-Palma, R.A. & Peñuela, G.A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review, Science of the Total Environment, 478, pp. 201–225.Segura, Y., Martínez, F. & Melero, J.A. (2013). Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron, Applied Catalysis B-Environmental, 136–137, pp. 64–69.Shen, J., Ou, C., Zhou, Z., Chen, J., Fang, K., Sun, X., Li, J., Zhou, L. & Wang, L. (2013). Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process, Journal of Hazardous Materials, 260, pp. 993–1000.Shimizu, A., Tokumura, M., Nakajima, K. & Kawase, Y. (2012). Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation, Journal of Hazardous Materials, 201–202, pp. 60–67.Suzuki, T., Moribe, M., Oyama, Y. & Niinae, M. (2012). Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies, Chemical Engineering Journal, 183, pp. 271–277.Taha, M.R. & Ibrahim, A.H. (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent, Journal of Environmental Chemical Engineering, 2, pp. 1–8.Weng, C.-H., Lin, Y.-T., Chang, C.-K. & Liu, N. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst, Ultrasonics Sonochemistry, 20, pp. 970–977.Xi, Y., Sun, Z., Hreid, T., Ayoko, G.A. & Frost, R.L. (2014). Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/palygorskite composite materials, Chemical Engineering Journal, 247, pp. 66–74.Yang, S.-T., Zhang, W., Xie, J., Liao, R., Zhang, X., Yu, B., Wu, R., Liu, X., Li, H. & Guo, Z. (2015). Fe3O4@SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment, RSC Advances, 5, pp. 5458–5463.Yang, S.T., Yang, L.J., Liu, X.Y., Xie, J.R., Zhang, X.L., Yu, B.W., Wu, R.H., Li, H.L., Chen, L.Y. & Liu, J.H. (2015). TiO2-doped Fe3O4 nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Science China Technological Sciences, 58, pp. 858–863.Zhang, H., Choi, H.J. & Huang, C.-P. (2005) Optimization of Fenton process for the treatment of landfill leachate, Journal of Hazardous Materials B, 125, pp. 166–174.Zhang, X., He, M., Liu, J.-H., Liao, R., Zhao, L., Xie, J., Wang, R., Yang, S.-T., Wang, H. & Liu, Y. (2014). Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Chinese Science Bulletin, 59, pp. 3406–3412. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Environmental Protection de Gruyter

Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes

Loading next page...
 
/lp/de-gruyter/automotive-fleet-repair-facility-wastewater-treatment-using-air-zvi-EX8KXjH30U
Publisher
de Gruyter
Copyright
© 2017 Archives of Environmental Protection
ISSN
2083-4810
eISSN
2083-4810
DOI
10.1515/aep-2017-0024
Publisher site
See Article on Publisher Site

Abstract

ReferencesBabuponnusami, A. & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, pp. 557–572.Barreto-Rodriguesa, M., Silva, F.T. & Paiva, T.C.B. (2009). Optimization of Brazilian TNT industry wastewater treatment using combined zero-valent iron and Fenton processes, Journal of Hazardous Materials, 168, pp. 1065–1069.Bautitz, I.R., Velosa, A.C. & Nogueira, R.F.P. (2012). Zero valent iron mediated degradation of the pharmaceutical diazepam, Chemosphere, 88, pp. 688–692.Chang, M.C., Shu, H.Y., Yu, H.H. & Sung, Y.C. (2006). Reductive decolorization and total organic carbon reduction of the diazo dye CI Acid Black 24 by zero-valent iron powder, Journal of Chemical Technology and Biotechnology, 81, pp. 1259–1266.Cao, J., Wei, L., Hunag, Q., Wang, L. & Han, S. (1999). Reductive degradation of azo dye by zero valent iron in aqueous solution, Chemosphere, 38, pp. 565–571.Chen, J.L., Al-Abed, S.R., Ryan, J.A. & Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron, Journal of Hazardous Materials, 83, pp. 243–254.Deng, Y. & Englehardt, J.D. (2006). Treatment of landfill leachate by the Fenton process, Water Research, 40, pp. 3683–3694.Devi, L.G., Kumar, S.G., Reddy, K.M. & Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism, Journal of Hazardous Materials, 164, pp. 459–467.Dong, J., Zhao, Y., Zhao, R. & Zhou, R. (2010). Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron, Journal of Environmental Sciences, 22, pp. 1741–1747.Fan, J., Guo, Y., Wang, J. & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, Journal of Hazardous Materials, 166, pp. 904–910.Fateminia, F.S. & Falamaki, C. (2013). Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal, Process Safety and Environmental Protection, 91, pp. 304–310.Fjordbøge, A.S., Baun, A., Vastrup, T. & Kjeldsen, P. (2013). Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater, Chemosphere, 90, pp. 627–633.Gogate, P.R. & Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8, pp. 501–551.Grcic, I., Papic, S., Zizek, K. & Koprivanac, N. (2012). Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation, Chemical Engineering Journal, 195–196, pp. 77–90.Guides to Pollution Prevention. The Automotive Repair Industry. United States Environmental Protection Agency (1991). EPA/625/7-91/013.Kang, Y.W. & Hwang, K-Y. (2000). Effect of reaction conditions on the oxidation efficiency in the Fenton process, Water Research, 34, pp. 2786–2790.Kim, D., Kim, J. & Choi, W. (2011). Effect of magnetic field on the zero valent iron induced oxidation reaction, Journal of Hazardous Materials, 192, pp. 928–931.Lai, P., Zhao, H., Wang, C. & Ni, J. (2007). Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, Journal of Hazardous Materials, 147, pp. 232–239.Lau, I.W.C., Wang, P. & Fang, H.H.P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation, Journal of Environmental Engineering, 27, pp. 666–669.Makowska, M. & Mazurkiewicz, J. (2016). Treatment of wastewater from service areas at motorways, Archives of Environmental Protection, 42, (4), pp. 80–89.Marcinowski, P., Bogacki, J. & Naumczyk, J. (2014). Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes, Journal of Environmental Science and Health, Part A, 49, pp. 1531–1541.Martins, R.C., Nunesa, M., Gando-Ferreira, L.M. & Quinta-Ferreira, R.M. (2014). Nanofiltration and Fenton’s process over iron shavings for surfactants removal, Environmental Technology, 35, pp. 2380–2388.Moon, B.-H., Park, Y.-B. & Park, K.-H. (2011). Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron, Desalination, 268, pp. 249–252.Naumczyk, J., Prokurat, I. & Marcinowski, P. (2012). Landfill leachates treatment by H2O2/UV,O3/H2O2, modified Fenton and modified Photo-Fenton methods, International Journal of Photoenergy, DOI: 10.1155/2012/909157.Piecuch, T., Andriyevska, L., Dąbrowski, J., Dąbrowski, T., Juraszka, B. & Kowalczyk, A. (2015). Oczyszczanie ścieków ze stacji naprawy samochodów, Annual Set The Environment Protection, 17, pp. 814–832.Pourrezaei, P., Alpatova, A., Khosravi, K., Drzewicz, P., Chen, Y., Chelme-Ayala, P. & El-Din, M.G. (2014). Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke, Journal of Environmental Management, 139, pp. 50–58.Rozporządzenie Ministra Środowiska, Dziennik Ustaw z dnia 18 listopada 2014 r. Poz. 1800, w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego.Rubio-Clemente, A., Torres-Palma, R.A. & Peñuela, G.A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review, Science of the Total Environment, 478, pp. 201–225.Segura, Y., Martínez, F. & Melero, J.A. (2013). Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron, Applied Catalysis B-Environmental, 136–137, pp. 64–69.Shen, J., Ou, C., Zhou, Z., Chen, J., Fang, K., Sun, X., Li, J., Zhou, L. & Wang, L. (2013). Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process, Journal of Hazardous Materials, 260, pp. 993–1000.Shimizu, A., Tokumura, M., Nakajima, K. & Kawase, Y. (2012). Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation, Journal of Hazardous Materials, 201–202, pp. 60–67.Suzuki, T., Moribe, M., Oyama, Y. & Niinae, M. (2012). Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies, Chemical Engineering Journal, 183, pp. 271–277.Taha, M.R. & Ibrahim, A.H. (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent, Journal of Environmental Chemical Engineering, 2, pp. 1–8.Weng, C.-H., Lin, Y.-T., Chang, C.-K. & Liu, N. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst, Ultrasonics Sonochemistry, 20, pp. 970–977.Xi, Y., Sun, Z., Hreid, T., Ayoko, G.A. & Frost, R.L. (2014). Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/palygorskite composite materials, Chemical Engineering Journal, 247, pp. 66–74.Yang, S.-T., Zhang, W., Xie, J., Liao, R., Zhang, X., Yu, B., Wu, R., Liu, X., Li, H. & Guo, Z. (2015). Fe3O4@SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment, RSC Advances, 5, pp. 5458–5463.Yang, S.T., Yang, L.J., Liu, X.Y., Xie, J.R., Zhang, X.L., Yu, B.W., Wu, R.H., Li, H.L., Chen, L.Y. & Liu, J.H. (2015). TiO2-doped Fe3O4 nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Science China Technological Sciences, 58, pp. 858–863.Zhang, H., Choi, H.J. & Huang, C.-P. (2005) Optimization of Fenton process for the treatment of landfill leachate, Journal of Hazardous Materials B, 125, pp. 166–174.Zhang, X., He, M., Liu, J.-H., Liao, R., Zhao, L., Xie, J., Wang, R., Yang, S.-T., Wang, H. & Liu, Y. (2014). Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Chinese Science Bulletin, 59, pp. 3406–3412.

Journal

Archives of Environmental Protectionde Gruyter

Published: Sep 1, 2017

References