Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe high frequency (3.0-5.0%) of congenital anomalies (CA) and intellectual disabilities (IDs), make them a serious problem, responsible for a high percentage (33.0%) of neonatal mortality. The genetic cause remains unclear in 40.0% of cases. Recently, molecular karyotyping has become the most powerful method for detection of pathogenic imbalances in patients with multiple CAs and IDs. This method is with high resolution and gives us the opportunity to investigate and identify candidate genes that could explain the genotype-phenotype correlations. This article describes the results from analysis of 81 patients with congenital malformations (CMs), developmental delay (DD) and ID, in which we utilized the CytoChip ISCA oligo microarray, 4 × 44 k, covering the whole genome with a resolution of 70 kb. In the selected group of patients with CAs, 280 copy number variations (CNVs) have been proven, 41 were pathogenic, 118 benign and 121 of unknown clinical significance (average number of variations 3.5). In six patients with established pathogenic variations, our data revealed eight pathogenic aberrations associated with the corresponding phenotype. The interpretation of the other CNVs was made on the basis of their frequency in the investigated group, the size of the variation, content of genes in the region and the type of the CNVs (deletion or duplication).
Balkan Journal of Medical Genetics – de Gruyter
Published: Jun 1, 2017
Keywords: Microarray comparative genomic hybridization (aCGH); Congenital anomalies (CAs); Copy number variations (CNVs)
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.