Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe presence of water may contribute to compositional heterogeneities observed in the deep lower mantle. Mg-rich ferropericlase (Fp) (Mg,Fe)O in the rock-salt structure is the second most abundant phase in a pyrolitic lower mantle model. To constrain water storage in the deep lower mantle, experiments on the chemical reaction between (Mg,Fe)O and H2O were performed in a laser-heated diamond-anvil cell at 95–121 GPa and 2000–2250 K, and the run products were characterized combining in situ synchrotron X-ray diffraction measurements with ex-situ chemical analysis on the recovered samples. The pyrite-structured phase FeO2Hx (x ≤ 1, Py-phase) containing a negligible amount of Mg (<1 at%) was formed at the expense of iron content in the Fp-phase through the reaction between (Mg,Fe)O and H2O, thus serving as water storage in the deepest lower mantle. The formation and segregation of nearly Mg-free Py-phase to the base of the lower mantle might provide a new insight into the deep oxygen and hydrogen cycles.
American Mineralogist – de Gruyter
Published: Mar 1, 2023
Keywords: Deep lower mantle; chemical reaction; ferropericlase; hydrous phases; hydrogen cycle
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.