Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe impact of D,L – homocysteic acid (DLH) microinjection (non-specific glutamate receptor agonist that causes excitation of neurons) into the Bötzinger complex area (BOT) was simulated using computer model of quiet breathing and cough reflex. Integrated signals from simulated neuronal populations innervating inspiratory phrenic and expiratory lumbar motoneurons were obtained. We analysed durations and amplitudes of these “pre-phrenic and pre-lumbar” activities during quiet breathing and cough reflex and the number of coughs elicited by a fictive 10-second-long stimulation. Model fibre population provides virtual DLH related excitation to expiratory neuronal populations with augmenting discharge pattern (BOT neurons). The excitation was modelled by a higher number of fibres and terminals (simulated a higher number of excitatory inputs) or by a higher synaptic strength (simulated a higher effect of excitatory inputs).Our simulations have demonstrated a high analogy of cough and breathing changes to those observed in animal experiments. The simulated neuronal excitations in the BOT led to cough depression represented by a lower cough number and a cough neuronal activity of the lumbar nerve. Despite the shortening of the phrenic activity during cough (compared to quiet breathing), which was not observed in animal experiments, our simulations confirm the ability of the computer model to simulate motor processes in the respiratory system. The computer model of functional respiratory / cough neural network is capable to confirm and / or predict the results obtained on animals.
Acta Medica Martiniana – de Gruyter
Published: Apr 1, 2022
Keywords: cough; breathing; simulation; modulation; excitation; neuron
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.