Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractA multi-fan (respectively multi-polytope), introduced first by Hattori and Masuda, is a purely combinatorial object generalizing an ordinary fan (respectively polytope) in algebraic geometry. It is well known that an ordinary fan or polytope is associated with a toric variety. On the other hand, we can geometrically realize multi-fans in terms of torus manifolds. However, it is unfortunate that two different torus manifolds may correspond to the same multi-fan. The goal of this paper is to give some criteria for a multi-polytope to be an ordinary polytope in terms of the Duistermaat–Heckman functions and winding numbers. Moreover, we also prove a generalized Pick formula and its consequences for simple lattice multi-polytopes by studying their Ehrhart polynomials.
Advances in Geometry – de Gruyter
Published: Jul 26, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.