Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Determination of lithium bioretention by maize under hydroponic conditions

Determination of lithium bioretention by maize under hydroponic conditions ReferencesAlexander, B., Browse, D.J., Reading, S.J. & Benjamin, I.S. (1999). A simple and accurate mathematical method for calculation of the EC50, Journal of Pharmacological and Toxicological Methods, 41 (2-3), pp. 55-58. DOI:10.1016/S1056-8719(98)00038-0Allender, W.J., Cresswell, G.C., Kaldor, J. & Kennedy, I.R. (1997). Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically-grown cotton and corn, Journal of Plant Nutrition, 20, 1, pp. 81-95. DOI:10.1080/01904169709365235Al-Thyabat, S., Nakamura, T., Shibata, E. & Iizuka, A. (2013). Adaptation of minerals processing operations for lithium- -ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review, Minerals Engineering, 45, pp. 4-17. DOI:10.1016/j.mineng.2012.12.005An, R., Chen, Q.J., Chai, M.F., Lu, P.L., Su, Z., Qin, Z.X., Chen, J. & Wang, X.C. (2007). AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter, The Plant Journal, 49, 4, pp. 718-728. DOI:10.1111/j.1365-313X.2006.02990.xAntonkiewicz, J. & Para, A. (2016). The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals, International Journal of Phytoremediation, 18, 3, pp. 245-250. DOI:10.1080/15226514.2015.1078771Antonkiewicz, J., Jasiewicz, C., Koncewicz-Baran, M. & Sendor, R. 2016. Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum, 38, 40, pp. 11. DOI:10.1007/s11738-016-2062-5Aral, H. & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment - a literature review, Ecotoxicology and Environmental Safety, 70, 3, pp. 349-356. DOI:10.1016/j.ecoenv.2008.02.026.Audet, P. & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective, Environmental Pollution, 147, pp. 231-237. DOI:10.1016/j.envpol.2006.08.011.Bingham, F.T., Bradford, G.R. & Page, A.L. (1964). Toxicity of lithium to plants, California Agriculture, 18, 9, pp. 6-7.Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M. & Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two litoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archives of Environmental Protection, 42, 3, pp. 47-57. DOI:10.1515/aep-2016-0032.Bradford, G.R. (1963). Lithium California’s water resources, California Agriculture, 17, 5, pp. 6-8.Calabrese, E.J. & Baldwin, L.A. (2003). Hormesis: The dose-response revolution, Annual Reviews of Pharmacology and Toxicology, 43, pp. 175-197. DOI:0.1146/annurev.pharmtox.43.100901.140223Enghag, P. (2008). Encyclopedia of the Elements: Technical Data-history-processing applications, Wiley-VCH, Weinheim 2008. Forbes, V.E. (2000). Is hormesis an evolutionary expectation? Functional Ecology, 14, 1, pp. 14-24. DOI:10.1046/j.1365-2435.2000.00392.xFranzaring, J., Schlosser, S., Damsohn, W. & Fangmeier, A. (2016). Regional differences in plant levels and investigations on the phytotoxicity of lithium, Environmental Pollution, 216, pp. 858-865. DOI:10.1016/j.envpol.2016.06.059Garzon, C.D. & Flores, F.J. (2013). Hormesis: Biphasic dose-responses to fungicides in plant pathogens and their potential threat to agriculture, Agricultural and Biological Sciences. Fungicides - Showcases of Integrated Plant Disease Management from Around the World. 12, pp. 311-328. DOI:10.5772/55359Hawrylak-Nowak, B., Kalinowska, M. & Szymańska, M. (2012). A study on selected physiological parameters of plants grown under lithium supplementation, Biological Trace Element Research, 149, 3, pp. 425-430. DOI:10.1007/s12011-012-9435-4Hoagland, D.R. & Arnon, D.I. (1950). The water-culture method for growing plants without soil, California Agriculture Experiment Station Circular, 347, pp. 1-32.Hull, S.L., Oty, U.V. & Mayes, W.M. (2014). Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges, Hydrobiologia, 736, pp. 83-97.Jurkowska, H. & Rogóż, A. (1991). Uptake of lithium by plants as depending on soil moisture content, Polish Journal of Soil Science, 24, pp. 93-97.Jurkowska, H., Rogóż, A. & Wojciechowicz, T. (1998). Comparison of lithium toxic influence on some cultivars of oats, maize and spinach, Acta Agraria et Silvestria. Series Agraria, 36, pp. 37-42. (in Polish)Jurkowska, H., Rogóż, H. & Wojciechowicz, T. (2003). Phytotoxicity of lithium on various soils, Polish Journal of Soil Science, 36, 1, pp. 71-76.Kabata-Pendias, A. & Pendias, H. (1992). Trace Elements in Soils and Plants, second ed. CRC Press, Boca Raton, London 1992.Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements, Wyd. Nauk. PWN, Warsaw 1999. (in Polish)Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace elements from soil to human, Springer-Verlag Berlin Heidelberg 2007.Kalinowska, M., Hawrylak-Nowak, B. & Szymańska, B. (2013). The infl uence of two lithium forms on the growth, L-Ascorbic acid content and lithium accumulation in lettuce plants, Biological Trace Element Research, 152, 2, pp. 251-257. DOI:10.1007/s12011-013-9606-yKayihan, C., Eyidogan, F., Afsar, N., Oktem, H.A. & Yucel, M. (2012). Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars, Biologia Plantarum, 56, 4, pp. 693-698. DOI:10.1007/s10535-012-0143-xKusznierewicz, B., Bączek-Kwinta, R., Bartoszek, A., Piekarska, A., Huk, A., Manikowska, A., Antonkiewicz, J., Namieśnik, J. & Konieczka, P. (2012). The dose-dependent infl uence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica Oleracea var. Capitata F. Alba), Environmental Toxicology and Chemistry, 31, 11, pp. 2482-2489. DOI:10.1002/etc.1977Léonard, A., Hantson, Ph. & Gerber, G.B. (1995). Mutagenicity, carcinogenicity and teratogenicity of lithium compounds, Mutation Research, 339, 3, pp. 131-137. DOI:10.1016/0165- 1110(95)90007-1 Li, X., Gao, P., Gjetvaj, B.,Westcott, N. & Gruber, M.Y. (2009). Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure, Plant Science, 177, 1, pp. 68-80. DOI:10.1016/j.plantsci.2009.03.013Lintschinger, J., Fuchs, N., Moser, H., Jäger, R., Hlebeina, T., Markolin, G. & Gössler, W. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa, Plant Foods for Human Nutrition, 50, 3, pp. 223-237. DOI:10.1007/BF02436059Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui ,Y., Pan, Y. & Tan, H. (2010). Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass, Acta Physiologiae Plantarum, 32, pp. 583-590. DOI:10.1007/s11738-009-0436-7Mackay, D. & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models, Environmental Pollution, 110, pp. 375-391. DOI:S0269-7491(00)00162-7Małachowska-Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 4, pp. 104-114. DOI:10.1515/aep-2015-0045Marchiol, L., Sacco, P., Assolari, S. & Zerbi, G. (2004). Reclamation of polluted soil: phytoremediation potential of crop-related Brassica Species, Water, Air and Soil Pollution, 158, pp. 345-356. DOI:10.1023/B:WATE.0000044862.51031.fbMcStay, N.G., Rogers, H.H. & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L., Science of the Total Environment, 16, 2, pp. 185-191. DOI:10.1016/0048-9697(80)90023-6 Murphy, A. & Tayz, L. (1995). A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (ecotypic variation and copper-sensitive mutants), Plant Physiology, 108, pp. 29-38. DOI:10.1104/pp.108.1.29Naranjo, M.A., Romero, C., Bellés, J.M., Montesinos, C., Vicente, O. & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco, Planta, 217, 3, pp. 417-424. DOI:10.1007/s00425-003-1017-4Ostrowska, A., Gawliński, S. & Szczubiałka, Z. (1991). Methods of analysis and assessment of soil and plant properties. A Catalogue, Institute of Environmental Protection - National Research Institute, Warsaw 1991.Rizwan, M., Ali, S., Qayyum, M.F., Ok, Y.S., Zia-ur-Rehman, M., Abbas, Z. & Hannan, F. (2016). Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review, Environmental Geochemistry and Health, 39(2), pp. 259-277. DOI:10.1007/s10653-016-9826-0Ruus, A., Schaanning, M., Øxnevad, S. & Hylland, K. (2005). Experimental results on bioaccumulation of metals and organic contaminants from marine sediments, Aquatic Toxicology, 72(3), pp. 273-292. DOI:10.1016/j.aquatox.2005.01.004Schrauzer, G.N. (2002). Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality, Journal of American College Nutrition, 21, pp. 14-21. Shacklette, H.T. & Boerngen, J.G. (1984). Element. Concentration in Soils and Other Surfi cial Materials of the Conterminous United States, Geological Survey Professional Paper, p. 1270, United States Government Printing Offi ce, Washington 1984.Shahzad, B., Mohsin, T., Waseem, H., Shah, A.N., Shakeel, A.A., Cheema, S.A. & Iftikhar, A. (2016). Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities - A review, Plant Physiology and Biochemistry, 107, pp. 104-115.Szentmihalyi, S., Siegert, E., Hennig, A., Anke, M. & Groppel, B. (1985). Zinc contents of fl ora in relation to age. geology of soil and plant species. Proc. Macro- and Trace Element. Seminar, University Leipzig-Jena, Germany 1985.Zonia, L.E. & Tupy, J. (1995). Lithium-sensitive calcium activity in the germination of apple (Malus × domestica Borkh.), tobacco (Nicotiana tabacum L.), and potato (Solanum tuberosum L.) pollen, Journal of Experimental Botany, 46, 8, pp. 973-979. DOI:10.1093/jxb/46.8.973Yalamanchali, R.C. (2012). Lithium, an emerging environmental contaminant, is mobile in the soil-plant system, A thesis submitted in partial fulfi llment of the requirements for the Degree of Master of Applied Science At Lincoln University. Lincoln University. Lincoln 2012. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Environmental Protection de Gruyter

Determination of lithium bioretention by maize under hydroponic conditions

Loading next page...
 
/lp/de-gruyter/determination-of-lithium-bioretention-by-maize-under-hydroponic-qMt07Xlfdc
Publisher
de Gruyter
Copyright
© Archives of Environmental Protection
ISSN
2083-4810
eISSN
2083-4810
DOI
10.1515/aep-2017-0036
Publisher site
See Article on Publisher Site

Abstract

ReferencesAlexander, B., Browse, D.J., Reading, S.J. & Benjamin, I.S. (1999). A simple and accurate mathematical method for calculation of the EC50, Journal of Pharmacological and Toxicological Methods, 41 (2-3), pp. 55-58. DOI:10.1016/S1056-8719(98)00038-0Allender, W.J., Cresswell, G.C., Kaldor, J. & Kennedy, I.R. (1997). Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically-grown cotton and corn, Journal of Plant Nutrition, 20, 1, pp. 81-95. DOI:10.1080/01904169709365235Al-Thyabat, S., Nakamura, T., Shibata, E. & Iizuka, A. (2013). Adaptation of minerals processing operations for lithium- -ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review, Minerals Engineering, 45, pp. 4-17. DOI:10.1016/j.mineng.2012.12.005An, R., Chen, Q.J., Chai, M.F., Lu, P.L., Su, Z., Qin, Z.X., Chen, J. & Wang, X.C. (2007). AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter, The Plant Journal, 49, 4, pp. 718-728. DOI:10.1111/j.1365-313X.2006.02990.xAntonkiewicz, J. & Para, A. (2016). The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals, International Journal of Phytoremediation, 18, 3, pp. 245-250. DOI:10.1080/15226514.2015.1078771Antonkiewicz, J., Jasiewicz, C., Koncewicz-Baran, M. & Sendor, R. 2016. Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum, 38, 40, pp. 11. DOI:10.1007/s11738-016-2062-5Aral, H. & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment - a literature review, Ecotoxicology and Environmental Safety, 70, 3, pp. 349-356. DOI:10.1016/j.ecoenv.2008.02.026.Audet, P. & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective, Environmental Pollution, 147, pp. 231-237. DOI:10.1016/j.envpol.2006.08.011.Bingham, F.T., Bradford, G.R. & Page, A.L. (1964). Toxicity of lithium to plants, California Agriculture, 18, 9, pp. 6-7.Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M. & Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two litoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archives of Environmental Protection, 42, 3, pp. 47-57. DOI:10.1515/aep-2016-0032.Bradford, G.R. (1963). Lithium California’s water resources, California Agriculture, 17, 5, pp. 6-8.Calabrese, E.J. & Baldwin, L.A. (2003). Hormesis: The dose-response revolution, Annual Reviews of Pharmacology and Toxicology, 43, pp. 175-197. DOI:0.1146/annurev.pharmtox.43.100901.140223Enghag, P. (2008). Encyclopedia of the Elements: Technical Data-history-processing applications, Wiley-VCH, Weinheim 2008. Forbes, V.E. (2000). Is hormesis an evolutionary expectation? Functional Ecology, 14, 1, pp. 14-24. DOI:10.1046/j.1365-2435.2000.00392.xFranzaring, J., Schlosser, S., Damsohn, W. & Fangmeier, A. (2016). Regional differences in plant levels and investigations on the phytotoxicity of lithium, Environmental Pollution, 216, pp. 858-865. DOI:10.1016/j.envpol.2016.06.059Garzon, C.D. & Flores, F.J. (2013). Hormesis: Biphasic dose-responses to fungicides in plant pathogens and their potential threat to agriculture, Agricultural and Biological Sciences. Fungicides - Showcases of Integrated Plant Disease Management from Around the World. 12, pp. 311-328. DOI:10.5772/55359Hawrylak-Nowak, B., Kalinowska, M. & Szymańska, M. (2012). A study on selected physiological parameters of plants grown under lithium supplementation, Biological Trace Element Research, 149, 3, pp. 425-430. DOI:10.1007/s12011-012-9435-4Hoagland, D.R. & Arnon, D.I. (1950). The water-culture method for growing plants without soil, California Agriculture Experiment Station Circular, 347, pp. 1-32.Hull, S.L., Oty, U.V. & Mayes, W.M. (2014). Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges, Hydrobiologia, 736, pp. 83-97.Jurkowska, H. & Rogóż, A. (1991). Uptake of lithium by plants as depending on soil moisture content, Polish Journal of Soil Science, 24, pp. 93-97.Jurkowska, H., Rogóż, A. & Wojciechowicz, T. (1998). Comparison of lithium toxic influence on some cultivars of oats, maize and spinach, Acta Agraria et Silvestria. Series Agraria, 36, pp. 37-42. (in Polish)Jurkowska, H., Rogóż, H. & Wojciechowicz, T. (2003). Phytotoxicity of lithium on various soils, Polish Journal of Soil Science, 36, 1, pp. 71-76.Kabata-Pendias, A. & Pendias, H. (1992). Trace Elements in Soils and Plants, second ed. CRC Press, Boca Raton, London 1992.Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements, Wyd. Nauk. PWN, Warsaw 1999. (in Polish)Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace elements from soil to human, Springer-Verlag Berlin Heidelberg 2007.Kalinowska, M., Hawrylak-Nowak, B. & Szymańska, B. (2013). The infl uence of two lithium forms on the growth, L-Ascorbic acid content and lithium accumulation in lettuce plants, Biological Trace Element Research, 152, 2, pp. 251-257. DOI:10.1007/s12011-013-9606-yKayihan, C., Eyidogan, F., Afsar, N., Oktem, H.A. & Yucel, M. (2012). Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars, Biologia Plantarum, 56, 4, pp. 693-698. DOI:10.1007/s10535-012-0143-xKusznierewicz, B., Bączek-Kwinta, R., Bartoszek, A., Piekarska, A., Huk, A., Manikowska, A., Antonkiewicz, J., Namieśnik, J. & Konieczka, P. (2012). The dose-dependent infl uence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica Oleracea var. Capitata F. Alba), Environmental Toxicology and Chemistry, 31, 11, pp. 2482-2489. DOI:10.1002/etc.1977Léonard, A., Hantson, Ph. & Gerber, G.B. (1995). Mutagenicity, carcinogenicity and teratogenicity of lithium compounds, Mutation Research, 339, 3, pp. 131-137. DOI:10.1016/0165- 1110(95)90007-1 Li, X., Gao, P., Gjetvaj, B.,Westcott, N. & Gruber, M.Y. (2009). Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure, Plant Science, 177, 1, pp. 68-80. DOI:10.1016/j.plantsci.2009.03.013Lintschinger, J., Fuchs, N., Moser, H., Jäger, R., Hlebeina, T., Markolin, G. & Gössler, W. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa, Plant Foods for Human Nutrition, 50, 3, pp. 223-237. DOI:10.1007/BF02436059Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui ,Y., Pan, Y. & Tan, H. (2010). Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass, Acta Physiologiae Plantarum, 32, pp. 583-590. DOI:10.1007/s11738-009-0436-7Mackay, D. & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models, Environmental Pollution, 110, pp. 375-391. DOI:S0269-7491(00)00162-7Małachowska-Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 4, pp. 104-114. DOI:10.1515/aep-2015-0045Marchiol, L., Sacco, P., Assolari, S. & Zerbi, G. (2004). Reclamation of polluted soil: phytoremediation potential of crop-related Brassica Species, Water, Air and Soil Pollution, 158, pp. 345-356. DOI:10.1023/B:WATE.0000044862.51031.fbMcStay, N.G., Rogers, H.H. & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L., Science of the Total Environment, 16, 2, pp. 185-191. DOI:10.1016/0048-9697(80)90023-6 Murphy, A. & Tayz, L. (1995). A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (ecotypic variation and copper-sensitive mutants), Plant Physiology, 108, pp. 29-38. DOI:10.1104/pp.108.1.29Naranjo, M.A., Romero, C., Bellés, J.M., Montesinos, C., Vicente, O. & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco, Planta, 217, 3, pp. 417-424. DOI:10.1007/s00425-003-1017-4Ostrowska, A., Gawliński, S. & Szczubiałka, Z. (1991). Methods of analysis and assessment of soil and plant properties. A Catalogue, Institute of Environmental Protection - National Research Institute, Warsaw 1991.Rizwan, M., Ali, S., Qayyum, M.F., Ok, Y.S., Zia-ur-Rehman, M., Abbas, Z. & Hannan, F. (2016). Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review, Environmental Geochemistry and Health, 39(2), pp. 259-277. DOI:10.1007/s10653-016-9826-0Ruus, A., Schaanning, M., Øxnevad, S. & Hylland, K. (2005). Experimental results on bioaccumulation of metals and organic contaminants from marine sediments, Aquatic Toxicology, 72(3), pp. 273-292. DOI:10.1016/j.aquatox.2005.01.004Schrauzer, G.N. (2002). Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality, Journal of American College Nutrition, 21, pp. 14-21. Shacklette, H.T. & Boerngen, J.G. (1984). Element. Concentration in Soils and Other Surfi cial Materials of the Conterminous United States, Geological Survey Professional Paper, p. 1270, United States Government Printing Offi ce, Washington 1984.Shahzad, B., Mohsin, T., Waseem, H., Shah, A.N., Shakeel, A.A., Cheema, S.A. & Iftikhar, A. (2016). Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities - A review, Plant Physiology and Biochemistry, 107, pp. 104-115.Szentmihalyi, S., Siegert, E., Hennig, A., Anke, M. & Groppel, B. (1985). Zinc contents of fl ora in relation to age. geology of soil and plant species. Proc. Macro- and Trace Element. Seminar, University Leipzig-Jena, Germany 1985.Zonia, L.E. & Tupy, J. (1995). Lithium-sensitive calcium activity in the germination of apple (Malus × domestica Borkh.), tobacco (Nicotiana tabacum L.), and potato (Solanum tuberosum L.) pollen, Journal of Experimental Botany, 46, 8, pp. 973-979. DOI:10.1093/jxb/46.8.973Yalamanchali, R.C. (2012). Lithium, an emerging environmental contaminant, is mobile in the soil-plant system, A thesis submitted in partial fulfi llment of the requirements for the Degree of Master of Applied Science At Lincoln University. Lincoln University. Lincoln 2012.

Journal

Archives of Environmental Protectionde Gruyter

Published: Dec 1, 2017

References