Access the full text.
Sign up today, get DeepDyve free for 14 days.
We present general estimates of the degree of approximation by positive s linear operators with the weighted K-functionals K1,,p , 1 s, p . Mathematics Subject Classification 2010: 41A36, 41A25. Key words: positive linear operators, Peetre's K-functional, degree of approximation. 1. Introduction Let S = x = (x1 , . . . , xd ) Rd |x1 , . . . , xd 0, x1 + . . . + xd 1 be the simplex in Rd , d N. Starting from the weight function used in [4], we consider the function (x) = [(x1 + . . . + xd ) (1 - x1 ) . . . (1 - xd )] , (0, 1). We denote by C (S) = 1 WC (S) = f C(S \ vi , i = 0, d )|() lim f (x)(x) R, i = 0, d xvi and f C(S) | f C (S), i = 1, d , xi where vi , i = 0, d are simplex vertices. We consider the K-functional s 1 K1,p, (f, t) = K s f, t; C(S), WC ,p (S) , t > 0, 1 s, p defined for the Banach space (C(S), · ) and the semi-Banach subspace 1 WC ,p (S), |·|W 1 C ,p , |f |W 1 C ,p = f f f ,..., x1 xd C ,p (S) s, s by K1,p, (f, t) = inf gW1 In Section 2 are given general estimates using the weighted K-functional s K1,p, , 1 s, p , and iroved the optimality of the constants (in the sense from [3]) appearing in these estimates. In Section 3 are established general estimates with optimal constants for the smooth functions in the case d = 1. These results are generalizations of those presented in [5] and [6]. We use the notation e0 for the function e0 : Rd R, e0 (x) = 1 and e1 for the function e1 : Rd Rd , e1 (x) = x. s 2. General estimates with K1,p, , 1 p, s ( f - g , t g p ) 1 s, p . Theorem 1. Let L : C(S) - C(S) a positive linear operator and f C(S). Then for every x S \ vi |i = 0, d and t > 0 we have |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| (1) + 2L (e0 , x) + 1 L ( e1 - xe0 q , x) · 1- t (x) 1 where q is such that p + 1 = 1. q Conversely, if there exists A, B, C 0 such that |L(f, x) - f (x)| A · |f (x)| |L (e0 , x) - 1| (2) + B · L (e0 , x) + C L ( e1 - xe0 q , x) t (x) holds for all positive linear operators, any f C(S), any x S\ vi |i = 0, d 1 and any t > 0, then A 1, C 1- and B 2. 1 Proof. Let g WC (S). For x, y S we denote by u(s) = (1 - s)x + sy, s [0, 1]. In [4], Lemma 2, iroved that the function s 1-s 1 is (u(s)) strictly decreasing on (0, 1). Then 1 1 ds (u(s)) (u(0)) (1 - s)- ds = 1 (1 - ) (x) and |f (y) - f (x)| 2 f - g + |g(y) - g(x)| = 2 f - g + |g(u(1))-g(u(0))| =2 f - g + (g (u(s))) ds 1 d i=1 d =2 f -g + 2 f -g + 2 f -g + g (u(s)) (yi - xi ) ds xi g |yi - xi | xi i=1 1 ds (u(s)) y-x q 1 · · t g p 1- t (x) y-x q 1 2+ · · max { f - g , t g p } . 1- t (x) Since g is arbitrary it follows that |f (y) - f (x)| Then |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| + |L (f - f (x)e0 , x)| |f (x)| · |L (e0 , x) - 1| + L 2e0 + 2+ 1 y-x q · 1- t (x) · K1,p, (f, t). |f (x)| · |L (e0 , x) - 1| + L (|f - f (x)e0 | , x) e1 - xe0 1 · 1- t (x) q , x · K1,p, (f, t) = |f (x)| · |L (e0 , x) - 1| + 2L (e0 , x) + 1 L ( e1 - xe0 q , x) · 1- t (x) which is (1). Now we prove the converse part. If we choose L(h, x) = 0 and f = e0 and replace in (2) we obtain A 1. We choose L(h, x) = h(1, 0, . . . , 0) and f (x) = (1 - x1 )1- . Since f f 1 WC (S) this implie t f p = t x1 = t (1 - ) . For x = (x1 , 0, . . . , 0), x1 (0, 1), we have L (f, x) = 0, L ( e1 - xe0 q , x) = 1 - x1 , f (x) = (1 - x1 )1- and (x) = x (1 - x1 ) . Replace in (2) and 1 we obtain (1 - x1 )1- Bt(1 - ) + C(1 - ) (1 - x1 )1- , ()t > 0 x 1 1 Passing to the limit t 0 we obtain C 1- x . Passing to the limit 1 1 x1 1 we obtain C 1- . To show that B 2 we assume first that d 2. If we choose L(h, x) = h(1, 0, . . . , 0), f (x) = 2x1 - 1, x = 0, 1 , . . . , 1 and replace in (2) we obtain 2 2 (2q + d - 1) q , ()t > 0 2B+C t(d - 1) 21-d (we use K1,p, (f, t) f = 1). Passing to the limit t we obtain 1 0 B 2. If d = 1, then we choose L(h, x) = h(1), f = e2 - 2e1 on 0, 2 1 and f = 2e1 - 3e0 on 1 , 1 , x = 2 and replace in (2). We obtain 1 2 2 2-1 1 (B + C2 t ) · 1 , ()t > 0 (we use K1, (f, t) f = 2 ). Passing to the 2 limit t we obtain B 2. s For the estimate with K1,p, , 1 s < we use the estimate (1) and the following relation between the K-functionals (for the case of the Kfunctionals defined for an arbitrary couple of quasi-normed spaces see [1]): Lemma 1. Let 1 s < . Then for f C(S) and t > 0 we have (3) = inf 1 s K1,p, (f, u). 1 Proof. ":" Let g WC ,p (S) and u > 0. We have f -g 1 s 1 s max { f - g , u g p } . ts us 1 s s Since g is arbitrary this implie 1 + since u is arbitrary the above inequality implies K1,p, (f, u). Also inf 1 s K1,p, (f, u). s g p = 0 and K1,p, (f, t) + C f - g s s s where C = p 1 C(t). Indeed, by definition of the K-functional there exists g1 WC ,p (S) 1 "": Let > 0. We can choose g WC ,p (S) such that f - g = 0, s such that K1,p, (f, t) + f - g1 s 1 s s . So, if f - g1 = 0 p and g1 p = 0 we choose g = g1 . If f - g1 = 0 and g1 p = 0 we choose g = g1 + e0 . Then f - g = f - g1 - e0 = = 0, g p = g1 p = 0 and f -g 1 s = s 1 1 s s K1,p, (f, t) + 2. If f - g1 = 0 and g1 p = 0 we choose g = g1 + C1 1 , where C1 is a constant for which f - g = 0 and 1 is the projection on the first component. We can suppose that 0 < C1 < 1. Then f - g = f - g1 - C1 1 f - g1 + C1 1 , g p = C1 = 0 and f -g 1 s s f - g1 + C1 (1 + t) K1,p, (f, t) + (2 + t) . f - g + t g If f - g1 = 0 and g1 p = 0 we choose g = g1 + 1 . Then f - g = f - g1 - 1 = 1 = 0, g p = = 0 and f -g 1 s = (1 + t) f - g + t g p + (1 + t) . On the assumption above we have inf 1+t 1 s K1,p, (f, u) s 1 s 1+t g f -g s 1 s K1,p, f, f -g g p f -g g f -g · max 1 s f -g , f -g g g p s K1,p, (f, t) + C . Since is arbitrary this implies the inequality. Corollary 1. Under the conditions of theorem we have |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| 1 L ( e1 - xe0 q , x) + max 2L (e0 , x) , · 1- t(x) (4) 1 K1,p, (f, t) and |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| (5) L ( e1 - xe0 q , x)s 1 + 2 L (e0 , x) + · (1 - )s ts (x)s s s 1 s s for 1 < s < , s = s-1 . Conversely, · if exists A, B, C 0 such that |L(f, x) - f (x)| A · |f (x)| · |L (e0 , x) - 1| + max B · L (e0 , x) , C · L ( e1 - xe0 q , x) t(x) 1 K1,p, (f, t) holds for all positive linear operators, any f C(S), any x S\ vi |i = 0, d 1 and any t > 0, then A 1, B 2 and C 1- . · if exists A, B, C 0 such that |L(f, x) - f (x)| A · |f (x)| · |L (e0 , x) - 1| + L ( e1 - xe0 q , x)s B · L (e0 , x) + C · ts (x)s 1 s holds for all positive linear operators, any f C(S), any x S\ vi |i = 0, d 1 and any t > 0, then A 1, B 2s and C (1-)s . Proof. Let u > 0. For s = 1 we have: |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| + 2L (e0 , x) + L ( e1 - xe0 q , x) 1 · 1- u(x) |f (x)| · |L (e0 , x) - 1| K1,p, (f, u) + max 2L (e0 , x) , from whence (4). L ( e1 - xe0 q , x) 1 · 1- t(x) 1+ t u K1,p, (f, u), s s-1 For 1 < s < , we denote by s = have: |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| + 2L (e0 , x) + and by H¨lder's inequality we o 1 L ( e1 - xe0 q , x) · 1- u(x) |f (x)| · |L (e0 , x) - 1| s s · K1,p, (f, u) L ( e1 - xe0 q , x)s 1 · 2 L (e0 , x) + (1 - )s ts (x)s 1 s 1 s K1,p, (f, u), from whence (5). For the converse part we make the same choices like in Theorem 1. s Other estimates with K1,p, , 1 < s < are obtained as a consequence of Theorem 1 or directly using the H¨lder-type inequality for positive linear o operators. Theorem 2. Let L : C(S) - C(S) be a positive linear operator and f C(S). Then ()x S \ vi |i = 0, d , ()t > 0 |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| L 1 + 2s L (e0 , x) + (6) · (1 - )s s · L (e0 , x) s · K1,p, (f, t) 1 1 s e1 - xe0 s , x q ts (x)s s holds for 1 < s < , s = s-1 . Conversely, if exists A, B, C 0 such that (7) |L(f, x) - f (x)| A · |f (x)| |L (e0 , x) - 1| s1 L e1 - xe0 s , x q 1 s · L (e0 , x) s · K1,p, (f, t) + B · L (e0 , x) + C s (x)s t holds for all positive linear operators, any f C(S), any x S\ vi |i = 0, d 1 and any t > 0 then A 1, B 2s and C (1-)s . 1 Proof. Let g WC ,p [0, 1]. We have |f (y) - f (x)| 2 f - g + where 1 < s, s < : 1 s y-x q 1 · · t g p 1- t(x) y-x q 1 2, · s · ( f - g , t g p ) 1- t(x) 1 s = 1. Since g is arbitrary follows that 2, y-x 1 · 1- t(x) q s s · K1,p, (f, t). |f (y) - f (x)| Then |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| + L (|f - f (x)e0 | , x) |f (x)| · |L (e0 , x) - 1| 2e0 , +L e1 - xe0 1 · 1- t(x) |f (x)| · |L (e0 , x) - 1| q s , x s · K1,p, (f, t) which is (6). For the converse part we make the same choices like in Theorem 1. s 1 e1 - xe0 q 1 s s · +L 2e0 , · L (e0 , x) s · K1,p, (f, t) s , x 1- t(x) = |f (x)| · |L (e0 , x) - 1| s1 L e1 -xe0 s , x q 1 1 s · L (e0 , x) s + 2s L (e0 , x) + · (1-)s ts (x)s s Remark 1. From K1,p, (f, t) K1,p, (f, t) 2 it follows s that lim = K1,p, (f, t). Passing to the limit s (in this 1) in (6) we obtain (1). case s Example 1. The Bernstein's operators are defined by (8) Bn (f, x) = k1 +...+kd =0 kd k1 ,..., n n bn,k (x) 9 where bn,k (x) = n! k1 ! . . . kd ! · n - d i=1 ki n- d i=1 ki xk 1 1 . . . xk d d 1- xi i=1 1 with n N and k1 , . . . , kd N {0}. We consider p = s = 2 and = 2 . We have Bn e1 - xe0 2 , x 2 2 (x) (1 - xi ) n (x1 + . . . + xd ) (1 - x1 ) . . . (1 - xd ) d i=1 xi and from (6) we obtain |Bn (f, x) - f (x)| 2 1+ xi ) 1 2 K1,2, f, (x1 + . . . + xd ) (1 - x1 ) . . . (1 - xd ) n d i=1 xi (1 - 3. General estimates for smooth functions s s In the case d = 1 we use the notation K1, := K1,, , 1 s , ) , f C[0, 1], t > 0. The s (f, t) = inf 1 so K1, s gWC [0,1] ( f - g , t g quantitative estimate for the remainder in Taylor's formula using the least concave majorant of the modulus of continuity was established in [2]. In 1 thiaper the K-functional K1 (f, t) = inf gC1 [a,b] ( f - g , t g ) 1 , f C[a, b], t > 0, is used. Now we derive in the next lemma a result for the K-functional K1, . Lemma 2. If f Cr [0, 1], r N, x (0, 1) and y [0, 1] then for the remainder in Taylor's formula of order r we have the following estimate (9) |Rr,f,x (y)| |y - x|r r! 2+ |y-x| t(r-+1)(x) K1, f (r) , t , ()t>0. r+1 Proof. Let g WC [0, 1] and x (0, 1). Let y [0, 1], y > x. Using the integral form of the remainder we have |Rr,g,x (y)|= 1 r! y x g(r+1) (u)(y-u)r du 1 r! y x (u)g (r+1) (u) (y - u)r du (u) g(r+1) r! x g(r+1) (y - u)r 1 (x) y-x y-u du r!(r - + 1)(x) (y - x)r+1 . If y [0, 1], y < x then 1 - y > 1 - x and |Rr,g,x (y)| = 1 r! 1-y 1-x 1-y 1-x g(r+1) (1 - u)(y - 1 + u)r du (1 - u)g(r+1) (1 - u) 1-y 1 r! g(r+1) r! = 1-x g(r+1) (1 - y - u)r 1 (1 - x) (1 - y - u)r du (1 - u) x-y 1-y-u du r!(r - + 1)(x) (x - y)r+1 . g (r+1) r!(r-+1)(x) So for y [0, 1] arbitrary we have |Rr,g,x (y)| have |y - x|r+1 . We |Rr,f -g,x (y)| = (f - g)(y) - k=0 (f - g)(k) (x) (y - x)k k! (f - g)(r) (x) (y - x)r r! = Rr-1,f -g,x (y) - (f - g)(r) |y - x|r r |Rr-1,f -g,x (y)| + |y - x| 2 · f (r) -g(r) . r! r! Then |Rr,f,x (y)| |Rr,f -g,x (y)| + |Rr,g,x (y)| |y - x|r r! |y - x|r r! 2 f (r) - g (r) + 2+ |y - x| t(r - + 1)(x) |y - x| g(r+1) (r - + 1)(x) max f (r) - g(r) , t g (r+1) . Since g is arbitrary this implies (9). Theorem 3. Let r N, L : C[0, 1] - C[0, 1] a positive linear operator and f Cr [0, 1]. Then ()x (0, 1), ()t > 0 we have |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| (10) f (k)(x) · L (e1 - xe0 )k , x k! Conversely, if exists Ak , B, C 0, k = 0, r such that |L(f, x) - f (x)| A0 · |f (x)| |L (e0 , x) - 1| L |e1 - xe0 |r+1 , x 1 · K1, f (r) , t . + 2L (|e1 - xe0 |r , x) + r! t(r - + 1)(x) (11) Ak f (k)(x) · L (e1 - xe0 )k , x L |e1 - xe0 |r+1 , x t(x) · K1, (f (r) , t) holds for all positive linear operators L : C[0, 1] - C[0, 1], any f 1 Cr [0, 1], any x (0, 1) and any t > 0 then A0 1, Ak k! , k = 1, r, 1 1 2 B r! and for Ak = k! , k = 1, r we have C r!(r-+1) . Proof. We have f (y) - f (x) = where r f (k) (x) r k! + B · L (|e1 - xe0 |r , x) + C (y - x)k + Rr,f,x (y) from L (f - f (x)e0 , x) = Then f (k) (x) L (e1 - xe0 )k , x + L (Rr,f,x , x) . k! |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| + |L (f - f (x)e0 , x)| |f (x)| · |L (e0 , x) - 1| + |f (x)| · |L (e0 , x) - 1| + r f (k) (x) L (e1 - xe0 )k , x k! +L (|Rr,f,x | , x) f (k) (x) L (e1 - xe0 )k , x k! which is (10). If we choose L(h, x) = 0 and f = e0 and replace in (11) we obtain A0 1. If we choose L(h, x) = h(1), f = ek , k = 1, r and replace in (11) we obtain L |e1 - xe0 |r+1 , x 1 r · K1, f (r) , t , + 2L (|e1 - xe0 | , x) + r! t(r - + 1)(x) 1-x l=1 Al · f (l) (x) (1 - x)l . 1 Passing to the limit x 0 we obtain Ak k! . 2 To show that B r! we choose L(h, x) = h(1) and f (x) = 2xr+ with > 0. For g = (r + ) · (r + - 1) . . . ( + 1) e0 we have K1, f (r) , t max f (r) - g , t g = f (r) -g = (r + )·(r + - 1) . . . ( + 1) . We replace in (11) and passing to the limit t , x 0, 0 (in this order) 2 we obtain B r! . 1 1 To show that C r!(r-+1) if Ak = k! , k = 1, r we choose L(h, x) = h(0) and 1 r 1 u 1- - x du. f (x) = 1 - x1- We have f (0) = 1, r and K1, to the limit t 0 we obtain 1 1 (k) (x) = (-1)k r! 1- -x)r-k du, k = r-+1 , f 1- (r-k)! x1- (u f (r) , t t f (r+1) = tr!. We replace in (11) and passing - r-+1 1- ie 1- 1 r x1- x1- u 1- - x u 1- - x du xk du + C · r!xr+1- (1 - x) r k r-k 1 1 - u 1- - x r - + 1 1 - x1- 1 r 1 u 1- - u 1- - x 1 - x1- du du + C · r!xr+1- (1 - x) from where C 1 r-+1 1 r!(r-+1) . C· r! . (1-x) Passing to the limit x 0 we obtain Corollary 2. Under the conditions of theorem we have |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| and f (k) (x) · L (e1 - xe0 )k , x k! L |e1 - xe0 |r+1 , x 1 1 · K1, f (r) , t + max 2L (|e1 - xe0 |r , x) , r! t(r - + 1)(x) |L(f, x) - f (x)| |f (x)| · |L (e0 , x) - 1| + f (k) (x) · L (e1 - xe0 )k , x k! s for 1 < s < , s = s-1 . Conversely, · if exists Ak , B, C 0, k = 0, r such that r L |e1 - xe0 | ,x 1 s s r 2 L (|e1 - xe0 | , x) + s s (x)s r! t (r - + 1) r+1 s1 s · K1, f (r) , t |L(f, x) - f (x)| A0 · |f (x)| |L (e0 , x) - 1| + Ak f (k) (x) · L (e1 - xe0 )k , x holds for all positive linear operators L : C[0, 1] - C[0, 1], any f 1 Cr [0, 1], any x (0, 1) and any t > 0 then A0 1, Ak k! , k = 1, r, 1 1 2 B r! and for Ak = k! , k = 1, r we have C r!(r-+1) . · if exists Ak , B, C 0, k = 0, r such that |L(f, x) - f (x)| A0 · |f (x)| |L (e0 , x) - 1| L |e1 - xe0 |r+1 , x + max B · L (|e1 -xe0 |r , x) , C · K 1 (f (r) , t) 1, t(x) Ak f (k) (x) · L (e1 - xe0 )k , x 1 s B · L (|e1 - xe0 | , x) + C L |e1 - xe0 |r+1 , x ts s · K1, (f (r) , t) holds for all positive linear operators L : C[0, 1] - C[0, 1], any f 1 Cr [0, 1], any x (0, 1) and any t > 0 then A0 1, Ak k! , k = 1, r, B 2s r!s and for Ak = 1 k! , k = 1, r we have C 1 . (r!(r-+1))s Proof. The proof is like for the Corollary 1.
Annals of the Alexandru Ioan Cuza University - Mathematics – de Gruyter
Published: Nov 24, 2014
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.