Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe show the existence of nonsymmetric homogeneous spin Riemannian manifolds whose Dirac operator is like that on a Riemannian symmetric spin space. Such manifolds are exactly the homogeneous spin Riemannian manifolds (M, g) which are traceless cyclic with respect to some quotient expression M = G/K and reductive decomposition 𝔤 = 𝔨 ⊕ 𝔪. Using transversally symmetric fibrations of noncompact type, we give a list of them.
Advances in Geometry – de Gruyter
Published: Jul 26, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.