Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe objective of the paper was to verify previously obtained results of research on the impact of the plate diameter on the determined value of pre-compaction stress of soil (NG) with a wider selection of dimensions of samples. Tests were carried out on samples with a diameter (D) of 100 mm and heights (H) of 30, 50 or 100 mm produced from the soil material (M) or collected (NNS) from subsoil with the granulation group of: silt loam, loam, sandy loam, sandy clay loam. The following soil properties were determined: granulation type, density of the solid phase, content of humus and calcium carbonate, reaction, plastic and liquid limit. Properties of samples were described with moisture, dry density of solid particles, porosity of aeration, degree of plasticity and saturation. Samples were loaded with plates of varied diameters. The NG value was calculated with the method of searching for the crossing point of tangents with the secondary stress curve and the virgin stresses curve (a traditional method). It was stated that the plate diameter (d) and sample height (H) do not influence the measurement results when the relation d/D is within 0.5 ≤ d/D ≤ 0.8 and the ratio D/H equals 2. It is possible to omit the condition d/D in a situation when soil is low cohesive and its degree of moisture is ca. 0.41-0.44.
Agricultural Engineering – de Gruyter
Published: Mar 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.