Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractRecent work on Kant’s conception of space has largely put to rest the view that Kant is hostile to actual infinity. Far from limiting our cognition to quantities that are finite or merely potentially infinite, Kant characterizes the ground of all spatial representation as an actually infinite magnitude. I advance this reevaluation a step further by arguing that Kant judges some actual infinities to be greater than others: he claims, for instance, that an infinity of miles is strictly smaller than an infinity of earth-diameters. This inequality follows from Kant’s mereological conception of magnitudes (quanta): the part is (analytically) less than the whole, and an infinity of miles is equal to only a part of an infinity of earth-diameters. This inequality does not, however, imply that Kant’s infinities have transfinite and unequal sizes (quantitates). Because Kant’s conception of size (quantitas) is based on the Eudoxian theory of proportions, infinite magnitudes (quanta) cannot be assigned exact sizes. Infinite magnitudes are immeasurable, but some are greater than others.
Archiv für Geschichte der Philosophie – de Gruyter
Published: Jun 30, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.