Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe present paper demonstrates application of biocatalysis to the synthesis of ethyl hexanoate, i.e. pineapple flavour ester, in a solvent free system. In order to evaluate the effect of various process parameters on reaction conversion, response surface methodology (RSM) complemented by central composite design (CCD) was employed. A maximum conversion of 88.57% was obtained while changing one factor at a time, at optimum conditions of temperature (50 °C), enzyme dose (2%), molar ratio acid to alcohol (1:3), speed of agitation 250 rpm and reaction time of 120 min. Based on this RSM study, the optimum predicted conditions were: 1:3.39 alcohol to acid ratio, 2.35% enzyme loading and 48.83 oC, for a predicted conversion of 90.99%. The activation energy for the enzymatic esterification was determined and calculated to be 25.76 kJ/mol. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that the esterification reaction was non-spontaneous and an endothermic reaction. The reaction seems to follow bi-substrate Ping Pong Bi Bi mechanism with inhibition by both substrates.
Biocatalysis – de Gruyter
Published: May 17, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.