Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Periodic Orbits Around the Triangular Points with Prolate Primaries

Periodic Orbits Around the Triangular Points with Prolate Primaries 1.INTRODUCTIONThe restricted problem of three bodies is considered one of the most important and famous problems of dynamics. This is due to its wide extremely important applications in the field of space dynamics, it describes accurately many real-world problems. In the restricted three-body problem, a body of negligible mass moves under the influence of the gravitational fields of two massive bodies. These two primary bodies rotate in circular or elliptic orbits about their common center of mass. Having negligible mass, the force exerted on the two primaries by the third body may be neglected.The dynamic system of the restricted three-body problem is characterized by the presence of five equilibrium points. In this system, the gravitational and the centrifugal forces on a spacecraft mass cancel each other out. These fixed points are called equilibrium points. Three of these points are collinear, and two of them are triangular. These points rotate at the same frequency as the massive bodies, and thus the spacecraft mass’s position relative to the primaries is constant. This makes them very important for research and space operations (Marsola et al., 2021); (Reiff et al., 2022).Furthermore, the periodic orbits around these equilibrium points acquired great attention and interest due to the crucial need for space orbits in the proximity of one of the collinear or triangular equilibrium points, (Abd El-Salam, 2019). Also, periodic orbits can be utilized to explore small solar system bodies, including comets and asteroids.Different methodologies have been used to address the restricted three-body problem. In general, quantitative methods, either analytical or numerical, give precise and accurate information on the evolution of differential systems. However, this information is usually limited to the solution of interest and to a small vicinity. Also, in most cases, the accuracy decreases as time increases. In the current work, to obtain the required accuracy of the actual space mission orbit, we combined an analytical perturbed solution with a qualitative method. This technique gives partial but also rigorously demonstrated properties that are valid at least for long periods of time. Moreover, it deals with questions of existence, integrals of motion, uniqueness, periodic orbits, stability, etc.Over the years, many researchers have investigated the issue of the restricted problem from various aspects, such as locations, stability of stationary points, and the periodic orbits, to mention some (Abouelmagd et al., 2016) (Burgos et al., 2019) (Pathak et al., 2019).Recently, Poddar and Sharma, (2021) studied the equations of motion for the problem, which are regularized in the neighborhood of one of the finite masses. Further, the authors studied the existence of periodic orbits in a three-dimensional coordinate system when the reduced mass equals zero. Radwan and Abd El Motelp,(2021) investigated the linear stability of the restricted three-body problem when both of the massive primaries are triaxial. Also, they studied the periodic orbits in the vicinity of the triangular points. The authors showed that the shape of periodic orbits changed because of the triaxiality of the primary bodies. (Alrebdi et al., 2022) investigated how the mass ratio μ and the transition parameter influence the stationary points of the pseudo-Newtonian planar circular restricted problem. The authors also, showed how these parameters influence the networks of simple symmetric periodic orbits.In the current work, we study the periodic orbits around the triangular points in the elliptic restricted three-body problem frame of work. To obtain a more realistic representation, the problem is generalized in the sense that bigger and smaller primaries are modeled as prolate spheroids. Also, we study in detail the variations in the angular frequencies for the long and short periodic orbits due to the shape of the primaries. Moreover, we compute explicit expressions for the eccentricities of the ellipses and determine the orientations of the principal axes for the ellipses that represent periodic orbits.2.MOTIVATIONSIt is well known in the field of space science that most celestial bodies are often irregular in shape. In the original version of the restricted problem, the massive primaries are supposed to be spherical and symmetrical bodies (Szebehely, 1967). However, when studying various problems, the irregular shapes of these bodies must be taken into account in order to obtain highly efficient solutions. In some cases, considering the two primaries as point mass is not sufficient to describe the dynamic problem.Over the past decades, several modifications have been proposed to include different additional parameters in the effective potential, such as the oblateness, the triaxiality, or the radiation of the two massive primaries (AbdulRaheem and Singh, 2008) (Beatty and Chaikin, 1999) (Radwan and Abd El Motelp, 2021) (Sharma and Subba, 1975) (Zahra et. al, 2017), and (Zotos, 2020). The mentioned reasons motivated us to study the dynamics of the problem under the influence of the real shape of the primaries. Furthermore, periodic orbits give more insights into a better understanding of the complex dynamical system of the restricted problem. Therefore, the crucial need for periodic orbits motivated us to study these orbits when both primaries are prolate spheroids.3.DYNAMICAL MODELThe current dynamical system contains an infinitesimal mass that rotates in the orbital plane of the two massive bodies, the primary m1 and the secondary mass m2. The third infinitesimal one is considered to act as a test particle while the two primaries are prolate triaxial and circulate about their common centre of mass. The motion of the infinitesimal body doesn’t have any dynamic impact on the motion of the main bodies, due to its insignificant mass. In order to remove the time dependence from the equations of motion, it is better to use a synodic-rotating frame that rotates with constant angular velocity about the z-axis. The origin of the reference frame is centered at the barycentre of the system, and the x-axis lies on the line joining the two primary bodies. For convenience, we use a units system where the constant of gravity G and the distance between the centers of the two primaries are both equal to unity. Utilizing the reduced mass μ=m1m1+m2$$\mu = {{{m_1}} \over {{m_1} + {m_2}}}$$, we can express the dimensionless masses of the two primaries as m1 = 1 – μ and m2 = μ. Following the notations of Szebehely, (1967), the equations of motion of the tiny object in the dimensionless rotating-synodic frame are given by1x¨−2 n y˙=∂U∂x,  y¨+2 n x˙=∂U∂y,$$\matrix{{\mathop x\limits^{\unicode{x00A8}} - 2\,n\,\dot y = {{\partial U} \over {\partial x}},} & {\,\,\,\,\,\,\,\mathop y\limits^{\unicode{x00A8}} + 2\,n\,\dot x = } \cr } {{\partial U} \over {\partial y}},$$where the amended potential function U can be written as2U=n22(x2+y2)+(1−μ)r1(1+Aσ2 r12)+μr2(1+Aγ2 r22)$$U = {{{n^2}} \over 2}({x^2} + {y^2}) + {{(1 - \mu )} \over {{r_1}}}(1 + {{{A_\sigma }} \over {2\,r_1^2}}) + {\mu \over {{r_2}}}(1 + {{{A_\gamma }} \over {2\,r_2^2}})$$and3r1=(x+μ)2+y2,r2=(x+μ−1)2+y2,\begin{array}{*{35}{l}}{{r}_{1}}=\sqrt{{{\left( x+\mu \right)}^{2}}+{{y}^{2}},} \\{{r}_{2}}=\sqrt{{{\left( x+\mu -1 \right)}^{2}}+{{y}^{2}},} \\\end{array}\The perturbed mean motion of the primaries is given by4n=1a(1+32(Aγ+Aσ)(1+e2)),$$n = \sqrt {{1 \over a}(1 + {3 \over 2}({A_\gamma } + {A_\sigma })(1 + {e^2}))} ,$$where r1 and r2 are the distances of the two massive bodies from the infinitesimal third body. Aγ and Aσ represent the prolateness coefficients. a and e are the semi-major axis and eccentricity of either primary, respectively.4.THE LOCATIONS OF THE TRIANGULAR POINTSThe locations of the equilibrium triangular points L4 and L5 can be obtained by setting all relative velocity and relative acceleration components equal to zero and solving the resulting system of equations Ux = Uy = 0. The first derivatives of the potential function can be written as5Ux=n2x−(3 Aγ+2 r22)μ(−1+x+μ)2 r25−(−1+μ)     (x+μ)[ 3 Aσ2 r15−1r13 ]\begin{array}{*{35}{l}}{{U}_{x}}={{n}^{2}}x-\frac{\left( 3\,{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}+2\,r_{2}^{2} \right)\mu \left( -1+x+\mu \right)}{2\,r_{2}^{5}}-\left( -1+\mu \right) \\\,\,\,\,\,\left( x+\mu \right)\left[ \frac{3\,{{A}_{\sigma }}}{2\,r_{1}^{5}}-\frac{1}{r_{1}^{3}} \right] \\\end{array}\6Uy=y[ n2+  (−1+μ)(3 Aσ2 r15+1r13)−μ(3 Aγ2 r25+1r23) ]$${U_y} = y\left[ {{n^2} + \,\,( - 1 + \mu )\left( {{{3\,{A_\sigma }} \over {2\,r_1^5}} + {1 \over {r_1^3}}} \right) - \mu \left( {{{3\,{A_\gamma }} \over {2\,r_2^5}} + {1 \over {r_2^3}}} \right)} \right]$$Since the perturbations considered in the present work are small, i.e., the prolateness coefficients are much smaller than unity, therefore, we can ignore its values (i.e., r1 = r2 = 1). Then it may be reasonable here to suppose that the locations of the triangular points L4,5 are the same as given by classical restricted problem but perturbed by terms δ1, δ2=OAγ, Aσ$${\delta _2} = {\cal O}\left( {{A_\gamma },\,{A_\sigma }} \right)$$). In this case, the solution of the classical restricted problem can be written as7ri=1+δi,δi<<1,(i=1,  2).$$\matrix{{{r_i} = 1 + {\delta _i},} & {{\delta _i} < < 1,} & {(i = 1,\,\,2)} \cr } .$$Using equations (5) and (6) and solving for x and y up to order one in the involved small quantities δ1, δ2, we obtain8x=12(2 δ1−2 δ2−2 μ+1),y=±321+43  (δ1+δ2),$$\matrix{{x = {1 \over 2}(2\,{\delta _1} - 2\,{\delta _2} - 2\,\mu + 1),} & {y = \pm } \cr } {{\sqrt 3 } \over 2}\sqrt {1 + {4 \over 3}\,\,({\delta _1} + {\delta _2})} ,$$Substituting the values of x, y, r1, and r2 into equations (5) and (6), and expanding the resulting equations, we can retained only first order terms in δ1, δ2. Therefore, we get9δ1=13−13 a(1+e2+32Aγ(1+e2)+Aσ(1+e2)),δ2=13−13 a(1+e2+32Aσ(1+e2)+Aγ(1+e2)).\begin{array}{*{35}{l}}{{\delta }_{1}}=\frac{1}{3}-\frac{1}{3\,a}\left( 1+{{e}^{2}}+\frac{3}{2}{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left( 1+{{e}^{2}} \right) \right), \\{{\delta }_{2}}=\frac{1}{3}-\frac{1}{3\,a}\left( 1+{{e}^{2}}+\frac{3}{2}{{A}_{\sigma }}\left( 1+{{e}^{2}} \right)+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( 1+{{e}^{2}} \right) \right). \\\end{array}\Substituting the values of δ1, δ2 into equations (8) yields the coordinates of the equilibrium triangular points10x=12−μ−Aγ6 a(1+e2)+Aσ6 a(1+e2),y=±318[ 13−(1+e2)[ 4a+5a(Aγ+Aσ) ] ]\begin{array}{*{35}{l}}x=\frac{1}{2}-\mu -\frac{{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}}{6\,a}\left( 1+{{e}^{2}} \right)+\frac{{{A}_{\sigma }}}{6\,a}\left( 1+{{e}^{2}} \right), \\y=\pm \frac{\sqrt{3}}{18}\left[ 13-\left( 1+{{e}^{2}} \right)\left[ \frac{4}{a}+\frac{5}{a}\left( {{A}_{\text{ }\!\!\gamma\!\!\text{ }}}+{{A}_{\sigma }} \right) \right] \right] \\\end{array}\Note that if we ignore the involved perturbations, equations (10) will lead to the corresponding classical one.5.PERIODIC ORBITSIt is well known that periodic orbits are of great importance, and they represent the backbone of studying the behavior of dynamic systems in the field of celestial mechanics. Let the locations of the equilibrium points be given as (xL4,5, yL4,5). Let us give the equilibrium points a small displacement (ξ0, η0), i.e., ξ0, η0 ≪ 1. We have11x=xL4,5+ξ0,y=yL4,5+η0\begin{matrix}x={{x}_{{{L}_{4,5}}}}+{{\xi }_{0}}, & y={{y}_{{{L}_{4,5}}}}+{{\eta }_{0}} \\\end{matrix}\Then the corresponding characteristic equation of the current problem is given by Szebehely, (1967)12λ4+  (4 n2−  UxxL4,5−  UyyL4,5)λ2+  UxxL4,5 UyyL4,5−  (UxyL4,5)2=0$${\lambda ^4} + \,\,(4\,{n^2} - \,\,U_{xx}^{{L_{4,5}}} - \,\,U_{yy}^{{L_{4,5}}}){\lambda ^2} + \,\,U_{xx}^{{L_{4,5}}}\,U_{yy}^{{L_{4,5}}} - \,\,{(U_{xy}^{{L_{4,5}}})^2} = 0$$where13UxxL4,5=−12+54 a(1+e2)+Aσ[ −32+338 a(1+e2)+3 μ2−11 μ4 a(1+e2) ]+Aγ[ 118 a(1+e2)−3 μ2+−11 μ4 a(1+e2) ],[\begin{array}{*{35}{l}}U_{xx}^{_{{{L}_{4,5}}}}=\frac{-1}{2}+\frac{5}{4\,a}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left[ \frac{-3}{2}+\frac{33}{8\,a}\left( 1+{{e}^{2}} \right)+\frac{3\,\mu }{2}-\frac{11\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right] \\\,\,\,\,\,\,\,\,\,\,+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left[ \frac{11}{8\,a}\left( 1+{{e}^{2}} \right)-\frac{3\,\mu }{2}+-\frac{11\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right], \\\end{array}\14UyyL4,5=12+74 a(1+e2)+Aσ[ −32+598 a(1+e2)+3 μ2−17 μ4 a(1+e2) ]+Aγ[ 258 a(1+e2)−3 μ2+17 μ4 a(1+e2) ],\begin{array}{*{35}{l}}U_{yy}^{{{L}_{4,5}}}=\frac{1}{2}+\frac{7}{4\,a}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left[ \frac{-3}{2}+\frac{59}{8\,a}\left( 1+{{e}^{2}} \right)+\frac{3\,\mu }{2}-\frac{17\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right] \\\,\,\,\,\,\,\,\,\,\,+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left[ \frac{25}{8\,a}\left( 1+{{e}^{2}} \right)-\frac{3\,\mu }{2}+\frac{17\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right], \\\end{array}\and15UxyL4,5=33 [−12+114 a(1+e2)+(1−112 a(1+e2))  μ+Aγ( 298 a(1+e2)+(5             −352 a(1+e2)μ ) )+Aσ(−5+1118 a(1+e2)+(5−352 a(1+e2)  μ)) ].\begin{array}{*{35}{l}}U_{xy}^{{{L}_{4,5}}}=\frac{\sqrt{3}}{3}\left[ \frac{-1}{2}+\frac{11}{4\,a}\left( 1+{{e}^{2}} \right)+\left( 1-\frac{11}{2\,a}\left( 1+{{e}^{2}} \right) \right)\,\,\mu +{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( \frac{29}{8\,a}\left( 1+{{e}^{2}} \right)+\left( 5 \right. \right. \right. \\\left. \left. \left. \,\,\,\,\,\,\,\,\,\,-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right)\mu \right) \right)+{{A}_{\sigma }}\left( -5+\frac{111}{8\,a}\left( 1+{{e}^{2}} \right)+\left( 5-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right)\,\,\mu \right) \right) \right]. \\\end{array}\UxxL4,5$$U_{xx}^{{L_{4,5}}}$$, UyyL4,5$$U_{yy}^{{L_{4,5}}}$$ and UxyL4,5$$U_{xy}^{{L_{4,5}}}$$ are the second partial derivatives of the amended potential function evaluated at the triangular points. The roots of the characteristic polynomial λi, of the present system, in the range 0 ≤ μ ≤ μcritical, are purely imaginary. Therefore, the motion about the triangular equilibrium points L4,5 is stable and composed of two harmonic motions governed by the variations16ξ=C1cos s1t+D1sin s1t+C2 cos s2t+D2 sin s2t,η=C¯1 cos s1 t+D¯1 sin s1t+C¯2 cos s2 t+D¯2 sin s2t\begin{array}{*{35}{l}}\xi ={{C}_{1}}\cos \,{{s}_{1}}t+{{D}_{1}}\sin \,{{s}_{1}}t+{{C}_{2}}\cos \,{{s}_{2}}t+{{D}_{2}}\sin \,{{s}_{2}}t, \\\eta ={{{\bar{C}}}_{1}}\cos {{s}_{1}}t+{{{\bar{D}}}_{1}}\sin {{s}_{1}}t+{{{\bar{C}}}_{2}}\cos {{s}_{2}}t+{{{\bar{D}}}_{2}}\sin {{s}_{2}}t \\\end{array}\where s1, s2 are the frequencies for long and short periodic orbits, respectively. The coefficients C1, D1, C¯1$${\bar C_1}$$, and D¯1$${\bar D_1}$$ are the long periodic terms, while the coefficients C2, D2, C¯2$${\bar C_2}$$, and D¯2$${\bar D_2}$$ are the short periodic terms. The frequencies s1, and s2 are given up to order μ2 as17s1=13226944 [ 9821a(1+e2)(−5488+47432 μ+157542μ2)−7Aσ( 16464( −42      +25 21a )−392(−1764+257321a)  μ+732408621aμ2+21ae2( 411600       −1008616μ+7324086 μ2 ) )+7Aγ( −7134421a+392(1764+833921a)       μ+2197872621aμ2+21ae2(−71344+3268888 μ+21978726 μ2) )−6 a21     (−1+e2)( Aσ(44688+165592 μ−13661634 μ2)+14( −784+1624 μ+128330 μ2     +Aγ(−2352−429352 μ+2817990 μ2)+14 [ 8( 686(421+21a)+14406ae2      +862421 μ+168399 21 μ2−Aσ [ −85456 21+633864a+56( 933521−      14406μa )+9481146 21 μ2−57624ae2(−11+14 μ) ]+8 Aγ( 147( −8 21      +147a )−14(64 21+7203a)  μ+1077477 21 μ2−7203ae2(−3+14 μ) ) ].\begin{array}{*{35}{l}}{{s}_{1}}=\frac{1}{3226944}\left[ 98\frac{\sqrt{21}}{a}\left( 1+{{e}^{2}} \right)\left( -5488+47432\,\mu +157542{{\mu }^{2}} \right)-7{{A}_{\sigma }}\left( 16464\left( -42 \right. \right. \right. \\\left. \,\,\,\,\,+\frac{25\,\sqrt{21}}{a} \right)-392\left( -1764+2573\frac{\sqrt{21}}{a} \right)\,\,\mu +7324086\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}}\left( 411600 \right. \\\left. \left. \,\,\,\,\,\,-1008616\mu +7324086\,{{\mu }^{2}} \right) \right)+7{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -71344\frac{\sqrt{21}}{a}+392\left( 1764+8339\frac{\sqrt{21}}{a} \right) \right. \\\left. \,\,\,\,\,\,\mu +21978726\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}}\left( -71344+3268888\,\mu +21978726\,{{\mu }^{2}} \right) \right)-6\,a\sqrt{21} \\\,\,\,\,\,\left( -1+{{e}^{2}} \right)\left( {{A}_{\sigma }}\left( 44688+165592\,\mu -13661634\,{{\mu }^{2}} \right)+14\left( -784+1624\,\mu +128330\,{{\mu }^{2}} \right. \right. \\\,\,\,\,\,+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -2352-429352\,\mu +2817990\,{{\mu }^{2}} \right)+14\left[ 8\left( 686\left( 4\sqrt{21}+\frac{21}{a} \right)+\frac{14406}{a}{{e}^{2}} \right. \right. \\\,\,\,\,\,+8624\sqrt{21}\,\mu +168399\,\sqrt{21}\,{{\mu }^{2}}-{{A}_{\sigma }}\left[ -85456\,\sqrt{21}+\frac{633864}{a}+56\left( 9335\sqrt{21}- \right. \right. \\\left. \left. \,\,\,\,\,14406\frac{\mu }{a} \right)+9481146\,\sqrt{21}\,{{\mu }^{2}}-\frac{57624}{a}{{e}^{2}}\left( -11+14\,\mu \right) \right]+8\,{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( 147\left( -8\,\sqrt{21} \right. \right. \\\left. \left. \left. \,\,\,\,\,+\frac{147}{a} \right)-14\left( 64\,\sqrt{21}+\frac{7203}{a} \right)\,\,\mu +1077477\,\sqrt{21}\,{{\mu }^{2}}-\frac{7203}{a}{{e}^{2}}\left( -3+14\,\mu \right) \right) \right]. \\\end{array}\and18s2=13226944 [ −9821a(1+e2)(−5488+47432 μ+157542μ2)+7Aσ( 16464       (42+25 21a)−392(1764+257321a)  μ+732408621aμ2+21ae2       ( 411600−1008616μ+7324086 μ2 )−7Aγ( −7134421a+392( −1764+8339        21a )μ+2197872621aμ2+21ae2(−71344+3268888 μ+21978726 μ2) )     +6 a 21  (−1+e2)( Aσ(44688+165592 μ−13661634 μ2)+14( −784+1624 μ      +128330 μ2 )+Aγ (−2352−429352 μ+2817990 μ2) )−14 [ 8( 686(4 21−21a)      −14406ae2 +8624 21 μ+168399 21 μ2−Aσ [ −392 (218 21+1617a)      +56  ( 9335 21+144061a )μ+9481146 21 μ2+57624ae2(−11+14 μ) ]      +8 Aγ( −147( 8 21+147a )−14(64 21−72031a)  μ+107747721       μ2+7203ae2(−3+14 μ) ) ].\begin{array}{*{35}{l}}{{s}_{2}}=\frac{1}{3226944}\left[ -98\frac{\sqrt{21}}{a}\left( 1+{{e}^{2}} \right)\left( -5488+47432\,\mu +157542{{\mu }^{2}} \right)+7{{A}_{\sigma }}\left( 16464 \right. \right. \\\,\,\,\,\,\,\left( 42+\frac{25\,\sqrt{21}}{a} \right)-392\left( 1764+2573\frac{\sqrt{21}}{a} \right)\,\,\mu +7324086\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}} \\\left. \,\,\,\,\,\,\left( 411600 \right.-1008616\mu +7324086\,{{\mu }^{2}} \right)-7{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -71344\frac{\sqrt{21}}{a}+392\left( -1764+8339 \right. \right. \\\left. \,\,\,\,\,\,\left. \frac{\sqrt{21}}{a} \right)\mu +21978726\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}}\left( -71344+3268888\,\mu +21978726\,{{\mu }^{2}} \right) \right) \\\,\,\,\,\,+6\,a\,\sqrt{21}\,\,\left( -1+{{e}^{2}} \right)\left( {{A}_{\sigma }}\left( 44688+165592\,\mu -13661634\,{{\mu }^{2}} \right)+14\left( -784+1624\,\mu \right. \right. \\\left. \,\,\,\,\,+128330\,{{\mu }^{2}} \right)+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left. \left( -2352-429352\,\mu +2817990\,{{\mu }^{2}} \right) \right)-14\left[ 8\left( 686\left( 4\,\sqrt{21}-\frac{21}{a} \right) \right. \right. \\\,\,\,\,\,-\frac{14406}{a}{{e}^{2}}\,+8624\,\sqrt{21}\,\mu +168399\,\sqrt{21}\,{{\mu }^{2}}-{{A}_{\sigma }}\left[ -392\,\left( 218\,\sqrt{21}+\frac{1617}{a} \right) \right. \\\left. \left. \,\,\,\,\,+56\,\,\left( 9335\,\sqrt{21}+ \right.14406\frac{1}{a} \right)\mu +9481146\,\sqrt{21}\,{{\mu }^{2}}+\frac{57624}{a}{{e}^{2}}\left( -11+14\,\mu \right) \right] \\\left. \,\,\,\,\,+8\,{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -147\left( 8\,\sqrt{21} \right. \right.+\frac{147}{a} \right)-14\left( 64\,\sqrt{21}-7203\frac{1}{a} \right)\,\,\mu +1077477\sqrt{21} \\\left. \left. \,\,\,\,\,\,{{\mu }^{2}}+\frac{7203}{a}{{e}^{2}}\left( -3+14\,\mu \right) \right) \right]. \\\end{array}\It can be seen from equations (17) and (18) that the frequencies of the orbit of both short and long periodic motions are affected by the prolateness coefficients of the primaries, the mass ratio, the semi-major axis a, and the eccentricity e. as can be seen in the following illustrative graphs:Figs. 1a and 1b illustrate the variations of the two frequencies s2 and s1 for different values of the prolateness coefficients Aσ, Aγ and e = 0.07, a = 0.94. Figs. 2a and 2b depict the variations of the short- and long-periodic frequencies s2 and s1 with the mass ratio μ for different values of the eccentricity of either primary (e = 0.05, 0.09, 0.4, Aσ = −0.06, Aγ = −0.04, and a = 0.94). It is observed that, in the above mentioned curves, the short-period frequency s2 is a decreasing function, while the long-period frequency s1 is an increasing one. Figs. 3a and 3b depict the variations of the long- ,and short periodic frequencies s1 and s2 with the mass parameter μ, for different values of the semi-major axis (a = 0.90, 0.95, 0.99). The figures show that the long period frequency, s1, is an increasing function, while the short-period frequency, s2 is a decreasing function. Figs. 4a, and 4b depict the variations in angular frequencies s1, and s2 under the effect of the perturbation considered in comparison with the classical case. It can be seen from both figures the effect of the perturbing forces on the behavior of the curves representing the angular frequencies. The perturbing forces cause these curves to depart from the classical case.Figure 1.a.The variation of short-period frequency versus mass parameter μ for different values of the plorate triaxialityFigure 1.b.The variation of long-period frequency versus mass parameter μ for different values of the plorate triaxiality parameterFigure 2.a.Eccentricity effect on the short-period frequencyFigure 2.b.Eccentricity effect on the long-period frequencyFigure 3.a.The variations of s2 versus mass parameter μ for different values of semi-major axis (a = 0.90, 0.95, 0.99), with fixed values of Aσ = −0.004, Aγ = −0.006, and e = 0.06Figure 3.b.The variations of s1 versus the mass parameter μ for different values of the semimajor axis (a = 0.90, 0.95, 0.99), with fixed plorateness triaxiality coefficients Aγ = −0.006, Aσ = −0.004, and e = 0.06Figure 4.a.Comparing the long-period frequency for some selected cases with the classical caseFigure 4.b.Comparing the short-period frequency for some selected cases with the classical case6.ELLIPTICAL ORBITSThe expansion of the amended potential function U about the triangular equilibrium points L4,5 is19U=UL4,5+  UxxL4,5ξ2+  UyyL4,5η2+  UxyL4,5ξη+O(3)$$U = {U^{{L_{4,5}}}} + \,\,U_{xx}^{{L_{4,5}}}{\xi ^2} + \,\,U_{yy}^{{L_{4,5}}}{\eta ^2} + \,\,U_{xy}^{{L_{4,5}}}\xi \eta + {\cal O}(3)$$As we can see equation (19) is quadratic, thus, the periodic orbits around the libration points L4,5 are elliptical, since the Hessian UxxUyy−Uxy2>0$${U_{xx}}{U_{yy}} - U_{xy}^2 > 0$$.6.1.Orientation of the principal axes of the ellipsesEquation (19) can be expressed in the form20U=L ξ2+  M ξ η+N η2+  U0$$U = L\,{\xi ^2} + \,\,M\,\xi \,\eta + N\,{\eta ^2} + \,\,{U_0}$$where21L=−14+58 a+5 e28 a+Aσ(−34+3316 a(1+e2)+μ(34−118 a(1+e2)))+    Aγ(1116(1+e2)+(−34+μ1116 a(1+e2))),\begin{array}{*{35}{l}}L=\frac{-1}{4}+\frac{5}{8\,a}+\frac{5\,{{e}^{2}}}{8\,a}+{{A}_{\sigma }}\left( -\frac{3}{4}+\frac{33}{16\,a}\left( 1+{{e}^{2}} \right)+\mu \left( \frac{3}{4}-\frac{11}{8\,a}\left( 1+{{e}^{2}} \right) \right) \right)+ \\\,\,\,\,A\gamma \left( \frac{11}{16}\left( 1+{{e}^{2}} \right)+\left( \frac{-3}{4}+\mu \frac{11}{16\,a}\left( 1+{{e}^{2}} \right) \right) \right), \\\end{array}\22M=33 [ −12+114 a(1+e2)+μ(1−112 a(1+e2))+Aγ( 298 a(1+e2)+        (5−352 a(1+e2))μ )+Aσ(−5+1118 a(1+e2)+(5−352 a(1+e2))) ],\begin{array}{*{35}{l}}M=\frac{\sqrt{3}}{3}\left[ \frac{-1}{2}+\frac{11}{4\,a}\left( 1+{{e}^{2}} \right)+\mu \left( 1-\frac{11}{2\,a}\left( 1+{{e}^{2}} \right) \right)+{{A}_{\gamma }}\left( \frac{29}{8\,a}\left( 1+{{e}^{2}} \right) \right.+ \right. \\\left. \left. \,\,\,\,\,\,\,\left( 5-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right) \right)\mu \right)+{{A}_{\sigma }}\left( -5+\frac{111}{8\,a}\left( 1+{{e}^{2}} \right)+\left( 5-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right) \right) \right) \right], \\\end{array}\23N=14+78 a(1+e2)+Aσ(−34+5916 a(1+e2))+μ(34−178 a(1+e2))+     Aγ(2516 a(1+e2)+μ(−38+178 a(1+e2))),\begin{array}{*{35}{l}}N=\frac{1}{4}+\frac{7}{8\,a}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left( \frac{-3}{4}+\frac{59}{16\,a}\left( 1+{{e}^{2}} \right) \right)+\mu \left( \frac{3}{4}-\frac{17}{8\,a}\left( 1+{{e}^{2}} \right) \right)+ \\\,\,\,\,\,{{A}_{\gamma }}\left( \frac{25}{16\,a}\left( 1+{{e}^{2}} \right)+\mu \left( \frac{-3}{8}+\frac{17}{8\,a}\left( 1+{{e}^{2}} \right) \right) \right), \\\end{array}\and24U0=23−527 a2+5954 a+(−1027 a2+5954 a)  e2−μ2 a(1+e2)+μ22 a(1+e2)+     Aσ( −2354 a2+7136 a+e2(−2327 a2+7136 a)−( 16 a2+1312 a+(13 a2+1312 a)      e2 )μ+34 a(1+e2) μ2 )+Aγ( −1627 a2+5936 a+e2(−3227 a2+5936 a)     +(16 a2−512 a+(13 a2−512 a)e2)  μ+34 a(1+e2) μ2 )\[\begin{array}{*{35}{l}}{{U}_{0}}=\frac{2}{3}-\frac{5}{27\,{{a}^{2}}}+\frac{59}{54\,a}+\left( \frac{-10}{27\,{{a}^{2}}}+\frac{59}{54\,a} \right)\,\,{{e}^{2}}-\frac{\mu }{2\,a}\left( 1+{{e}^{2}} \right)+\frac{{{\mu }^{2}}}{2\,a}\left( 1+{{e}^{2}} \right)+ \\\,\,\,\,\,{{A}_{\sigma }}\left( \frac{-23}{54\,{{a}^{2}}}+\frac{71}{36\,a}+{{e}^{2}}\left( \frac{-23}{27\,{{a}^{2}}}+\frac{71}{36\,a} \right)-\left( \frac{1}{6\,{{a}^{2}}}+\frac{13}{12\,a}+\left( \frac{1}{3\,{{a}^{2}}}+\frac{13}{12\,a} \right) \right. \right. \\\left. \,\,\,\,\,{{e}^{2}} \right)\mu +\frac{3}{4\,a}\left( 1+{{e}^{2}} \right)\left. {{\mu }^{2}} \right)+{{A}_{\gamma }}\left( \frac{-16}{27\,{{a}^{2}}}+\frac{59}{36\,a}+{{e}^{2}}\left( \frac{-32}{27\,{{a}^{2}}}+\frac{59}{36\,a} \right) \right. \\\,\,\,\,\,+\left( \frac{1}{6\,{{a}^{2}}}-\frac{5}{12\,a}+\left( \frac{1}{3\,{{a}^{2}}}-\frac{5}{12\,a} \right){{e}^{2}} \right)\,\,\mu +\frac{3}{4\,a}\left( 1+{{e}^{2}} \right)\left. {{\mu }^{2}} \right) \\\end{array}\]25ξ=ξ¯cosθ−η¯sinθ,η=ξ¯sinθ+η¯cosθ.\[\begin{matrix}\xi =\bar{\xi }\cos \theta -\bar{\eta }\sin \theta , & \eta = \\\end{matrix}\bar{\xi }\sin \theta +\bar{\eta }\cos \theta .\]Hence, the new form of equation (20), is given asU=L¯ξ¯2+N¯η¯2+  U¯0\[U=\bar{L}{{\bar{\xi }}^{2}}+\bar{N}{{\bar{\eta }}^{2}}+\,\,{{\bar{U}}_{0}}\]where L¯$$\bar L$$, N¯$$\bar N$$, and Ū0 are new modified quantities. It is easily seen from equation (20) that the periodic orbits around the triangular points L4,5 are elliptical. Setting the term that contains η¯ξ¯$$\bar \eta \bar \xi $$ equal to zero, we have26tan2θ=2 UxyUxx−Uyytan2θ=±33  [ 4 a+(1+e2)(2+Aσ(13−6μ)+Aγ(7+6μ)) ] [ (1+e2) [ −22         −29Aγ−111Aσ+μ(44+140  (Aγ+Aσ)) ]+4 a [ 1+10Aσ−10 μ (15+Aγ+Aσ) ] ]\[\begin{matrix}\tan 2\theta =\frac{2\,{{U}_{xy}}}{{{U}_{xx}}-{{U}_{yy}}} \\\tan 2\theta =\pm \frac{\sqrt{3}}{3\,\,[4\,a+(1+{{e}^{2}})(2+{{A}_{\sigma }}(13-6\mu )+{{A}_{\gamma }}(7+6\mu ))]}[(1+{{e}^{2}})[-22 \\\,\,\,\,\,\,\,\,-29{{A}_{\gamma }}-111{{A}_{\sigma }}+\mu (44+140\,\,({{A}_{\gamma }}+{{A}_{\sigma }}))]+4\,a[1+10{{A}_{\sigma }}-10\,\mu \\(\frac{1}{5}+{{A}_{\gamma }}+{{A}_{\sigma }})]] \\\end{matrix}\]where the plus sign (minus sign) refers to the centre of the ellipse at L4,5.6.2.Eccentricities of the ellipsesIn order to obtain the eccentricities of the ellipses, we use the equations Szebehely, (1967)27e1=(1−α12)12\[{{e}_{1}}={{\left( 1-\alpha _{1}^{2} \right)}^{\frac{1}{2}}}\]28e2=(1−α22)12\[{{e}_{2}}={{\left( 1-\alpha _{2}^{2} \right)}^{\frac{1}{2}}}\]and29αi=2sisi2+λ¯1=si2+λ¯22 si\[{{\alpha }_{i}}=\frac{2{{s}_{i}}}{s_{i}^{2}+{{{\bar{\lambda }}}_{1}}}=\frac{s_{i}^{2}+{{{\bar{\lambda }}}_{\text{2}}}}{2\,{{s}_{i}}}\]]where λ¯1$${{\rm{\bar \lambda }}_1}$$ and λ¯2$${{\rm{\bar \lambda }}_2}$$ are the roots of the characteristic equation. For i = 1, 2, with similar expression for α2, we have30α1=−13687936 a350981+22977173 [ 392−3+21 (1+e2)  ( 28     ( 5838−1274 21+(−903+197 21)Aγ+(151431−3305  21) Aσ )+     ( −4091010+892738 21+(−17969553+32921313 21)Aγ+( −8382927      +1829311 21 ) Aσ ) μ )+48 −3+21( −2415+527 21 a2(−1+e2)     (196−798Aσ−406 μ−2957Aσμ+Aγ(42+7667μ))+21 2 a52     (−2+3 e2)( 336(74641 3−48864 7)Aγ+( 10727940055 3−      70230856177 )Aγ μ+(−152436875591 3+99793363029 7)Aσ μ−     28( −1466864 3+960288 7+67642792 3 Aσ μ−44282604 7Aσ−      775851233 μ+50791389 7μ ) )+92 a72(−2+5 e2)( Aγ( 29997212      3−19637772 7+52699894653 3 μ−34500179898 7μ )+28( 4895492      3−3204852 7+422762921 3 μ−276763308 7 μ )+Aσ( −9040057628      3+5918107020 7−10526335657773 3​ μ+689111808570 7 μ ) )+     112 −3+21 a( 56(−2415+527 21)(7+22 μ)+Aσ( −6938988+      1514212 21+25797723 μ−5629555 21 μ )+Aγ( 405720−88536 21−      2944578μ+642554 21 μ ) )+294 2 a32(−2+e2)( Aγ( 1449028 3−      948612 7+235533725 3 μ−154193028 7 μ )+Aσ( −502969323      +32927076 7−2310568225 3 μ+1512622056 7 μ )+28( 70700 3−      46284 7+121(13097 3−8574 7)  μ ) ) ].\[\begin{array}{*{35}{l}}{{\alpha }_{1}}=\frac{-1}{\text{3687936}\,a}\sqrt{\text{350981}+\text{229771}\sqrt{\frac{7}{3}}}\left[ 392\sqrt{-3+\sqrt{21}} \right.\left( 1+{{e}^{2}} \right)\,\,\left( 28 \right. \\\,\,\,\,\,\left( \text{5838}-\text{1274}\,\sqrt{21}+\left( -903+197\,\sqrt{21} \right){{A}_{\gamma }}+\left( \text{151431}-\text{3305}\,\,\sqrt{21} \right)\left. {{A}_{\sigma }} \right)+ \right. \\\,\,\,\,\,\left( -\text{4091010}+\text{892738}\,\sqrt{21}+\left( -\text{17969553}+\text{32921313}\,\sqrt{21} \right){{A}_{\gamma }}+\left( -\text{8382927} \right. \right. \\\left. \,\,\,\,\,+\text{1829311}\,\sqrt{21} \right)\left. {{A}_{\sigma }} \right)\left. \mu \right)+48\,\sqrt{-3+\sqrt{21}}\left( -\text{2415}+\text{527}\,\sqrt{21}\,{{a}^{2}}\left( -1+{{e}^{2}} \right) \right. \\\,\,\,\,\,\left( 169-798{{A}_{\sigma }}-406\,\mu -2957{{A}_{\sigma }}\mu +{{A}_{\gamma }}\left( 42+\text{7667}\mu \right) \right)+21\,\sqrt{2}\,{{a}^{\frac{5}{2}}} \\\,\,\,\,\,\left( -2+3\,{{e}^{2}} \right)\left( 336\left( \text{74641}\,\sqrt{3}-\text{48864}\,\sqrt{7} \right) \right.{{A}_{\gamma }}+\left( \text{10727940055}\,\sqrt{3}- \right. \\\left. \,\,\,\,\,\text{7023085617}\sqrt{7} \right){{A}_{\gamma }}\,\mu +\left( -\text{152436875591}\,\sqrt{3}+\text{99793363029}\,\sqrt{7} \right){{A}_{\sigma }}\,\mu - \\\,\,\,\,\,28\left( -\text{1466864}\,\sqrt{3}+\text{960288}\,\sqrt{7}+\text{67642792}\,\sqrt{3}\,{{A}_{\sigma }}\,\mu -\text{44282604}\,\sqrt{7}{{A}_{\sigma }}- \right. \\\left. \left. \,\,\,\,\,\text{77585123}\sqrt{3}\,\mu +\text{50791389}\,\sqrt{7}\mu \right) \right)+9\sqrt{2}\,{{a}^{\frac{7}{2}}}\left( -2+5\,{{e}^{2}} \right)\left( {{A}_{\gamma }}\left( \text{29997212} \right. \right. \\\left. \,\,\,\,\,\sqrt{3}-\text{19637772}\,\sqrt{7}+\text{52699894653}\,\sqrt{3}\,\mu -\text{34500179898}\,\sqrt{7}\mu \right)+28\left( \text{4895492} \right. \\\left. \,\,\,\,\,\sqrt{3}-\text{3204852}\,\sqrt{7}+\text{422762921}\,\sqrt{3}\,\mu -\text{276763308}\,\sqrt{7}\,\mu \right)+{{A}_{\sigma }}\left( -\text{9040057628} \right. \\\left. \left. \,\,\,\,\,\sqrt{3}+\text{5918107020}\,\sqrt{7}-\text{10526335657773}\,\sqrt{3}\,\mu +\text{689111808570}\,\sqrt{7}\,\mu \right) \right)+ \\\,\,\,\,\,112\,\sqrt{-3+\sqrt{21}}\,a\left( 56\left( -\text{2415}+\text{527}\,\sqrt{21} \right)\left( 7+22\,\mu \right)+{{A}_{\sigma }}\left( -\text{6938988}+ \right. \right. \\\left. \,\,\,\,\,\text{1514212}\,\sqrt{21}+\text{25797723}\,\mu -\text{5629555}\,\sqrt{21}\,\mu \right)+{{A}_{\gamma }}\left( \text{405720}-\text{88536}\,\sqrt{21}- \right. \\\left. \left. \,\,\,\,\,\text{2944578}\mu +\text{642554}\,\sqrt{21}\,\mu \right) \right)+294\,\sqrt{2}\,{{a}^{\frac{3}{2}}}\left( -2+{{e}^{2}} \right)\left( {{A}_{\gamma }}\left( \text{1449028}\,\sqrt{3}- \right. \right. \\\left. \,\,\,\,\,\text{948612}\,\sqrt{7}+\text{235533725}\,\sqrt{3}\,\mu -\text{154193028}\,\sqrt{7}\,\mu \right)+{{A}_{\sigma }}\left( -\text{50296932}\sqrt{3} \right. \\\left. \,\,\,\,\,+\text{32927076}\,\sqrt{7}-\text{2310568225}\,\sqrt{3}\,\mu +\text{1512622056}\,\sqrt{7}\,\mu \right)+28\left( \text{70700}\,\sqrt{3}- \right. \\\left. \left. \left. \,\,\,\,\,\text{46284}\,\sqrt{7}+121\left( \text{13097}\,\sqrt{3}-\text{8574}\,\sqrt{7} \right)\,\,\mu \right) \right) \right]. \\\end{array}\]Equation (26) determines the orientation of the orbits with respect to the rotational coordinate system. It is observed that the orientation of the orbits is affected by the involved perturbations. Equation (27) depicts, for i = 1, 2, the eccentricities of the short- and long-periodic orbits around the triangular points L4,5.We can observe that, from Fig. 5a, and 5b, the eccentricity of the long-period orbit decreases under the effect of the perturbations, while the eccentricity of the short-period one increases. Also, we see from the figures that the perturbed case are shifted from the classical case because of the influence of the disturbing forces. Ignoring all the perturbations considered in the present work, our results will be the same as those obtained by Szebehely, (1967).Figure. 5.a.Comparing the eccentricity of long period motion in the classical with a selected perturbed case.Figure 5.b.Comparing the eccentricity of short-period motion in the classical with a selected perturbed case.7.CONCLUSIONSIn this work, we have investigated the periodic orbits around the triangular libration points L4,5, in the range 0 < μ < μc. We formulated the problem in a more general way and used a more complex mathematical model than previously published papers that considered the classical case (Abouelmagd and Mostafa, 2015). The prolateness coefficients of both primaries are taken into account as a perturbing force. We investigated the variations of the angular frequencies for the long and the short periodic orbits. The variation of both frequencies is represented graphically versus the mass parameter μ for distinct values of the included perturbations. It is found that for small mass ratio μ, an increment in the perturbing forces results in a decrease in the frequency of the short-period orbit, while an increment in the same parameters will increase the frequency of the long-period one. Both frequencies coincide at the critical value of the mass parameter μc. In addition, we derived explicit expressions for the eccentricities e1 and e2 of the long and short-period orbits. We represented graphically both eccentricities versus the mass parameter. It is found that the eccentricities e1 and e2 of the long and short-period orbits are decreasing and increasing functions, respectively. Furthermore, we studied the orientation of the principle axes of the ellipses. It is observed that the included perturbing forces influence the orientation of the principal axes. The perturbing forces result in a change in the inclination angle of the orbits. Finally, in our opinion, we believe that the current research has special importance to space science applications to send spacecraft into stable regions in planetary systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Satellites de Gruyter

Periodic Orbits Around the Triangular Points with Prolate Primaries

Artificial Satellites , Volume 58 (1): 13 – Mar 1, 2023

Loading next page...
 
/lp/de-gruyter/periodic-orbits-around-the-triangular-points-with-prolate-primaries-QPnHMPL0SB

References (16)

Publisher
de Gruyter
Copyright
© 2023 Nihad Abd El Motelp et al., published by Sciendo
ISSN
2083-6104
eISSN
2083-6104
DOI
10.2478/arsa-2023-0001
Publisher site
See Article on Publisher Site

Abstract

1.INTRODUCTIONThe restricted problem of three bodies is considered one of the most important and famous problems of dynamics. This is due to its wide extremely important applications in the field of space dynamics, it describes accurately many real-world problems. In the restricted three-body problem, a body of negligible mass moves under the influence of the gravitational fields of two massive bodies. These two primary bodies rotate in circular or elliptic orbits about their common center of mass. Having negligible mass, the force exerted on the two primaries by the third body may be neglected.The dynamic system of the restricted three-body problem is characterized by the presence of five equilibrium points. In this system, the gravitational and the centrifugal forces on a spacecraft mass cancel each other out. These fixed points are called equilibrium points. Three of these points are collinear, and two of them are triangular. These points rotate at the same frequency as the massive bodies, and thus the spacecraft mass’s position relative to the primaries is constant. This makes them very important for research and space operations (Marsola et al., 2021); (Reiff et al., 2022).Furthermore, the periodic orbits around these equilibrium points acquired great attention and interest due to the crucial need for space orbits in the proximity of one of the collinear or triangular equilibrium points, (Abd El-Salam, 2019). Also, periodic orbits can be utilized to explore small solar system bodies, including comets and asteroids.Different methodologies have been used to address the restricted three-body problem. In general, quantitative methods, either analytical or numerical, give precise and accurate information on the evolution of differential systems. However, this information is usually limited to the solution of interest and to a small vicinity. Also, in most cases, the accuracy decreases as time increases. In the current work, to obtain the required accuracy of the actual space mission orbit, we combined an analytical perturbed solution with a qualitative method. This technique gives partial but also rigorously demonstrated properties that are valid at least for long periods of time. Moreover, it deals with questions of existence, integrals of motion, uniqueness, periodic orbits, stability, etc.Over the years, many researchers have investigated the issue of the restricted problem from various aspects, such as locations, stability of stationary points, and the periodic orbits, to mention some (Abouelmagd et al., 2016) (Burgos et al., 2019) (Pathak et al., 2019).Recently, Poddar and Sharma, (2021) studied the equations of motion for the problem, which are regularized in the neighborhood of one of the finite masses. Further, the authors studied the existence of periodic orbits in a three-dimensional coordinate system when the reduced mass equals zero. Radwan and Abd El Motelp,(2021) investigated the linear stability of the restricted three-body problem when both of the massive primaries are triaxial. Also, they studied the periodic orbits in the vicinity of the triangular points. The authors showed that the shape of periodic orbits changed because of the triaxiality of the primary bodies. (Alrebdi et al., 2022) investigated how the mass ratio μ and the transition parameter influence the stationary points of the pseudo-Newtonian planar circular restricted problem. The authors also, showed how these parameters influence the networks of simple symmetric periodic orbits.In the current work, we study the periodic orbits around the triangular points in the elliptic restricted three-body problem frame of work. To obtain a more realistic representation, the problem is generalized in the sense that bigger and smaller primaries are modeled as prolate spheroids. Also, we study in detail the variations in the angular frequencies for the long and short periodic orbits due to the shape of the primaries. Moreover, we compute explicit expressions for the eccentricities of the ellipses and determine the orientations of the principal axes for the ellipses that represent periodic orbits.2.MOTIVATIONSIt is well known in the field of space science that most celestial bodies are often irregular in shape. In the original version of the restricted problem, the massive primaries are supposed to be spherical and symmetrical bodies (Szebehely, 1967). However, when studying various problems, the irregular shapes of these bodies must be taken into account in order to obtain highly efficient solutions. In some cases, considering the two primaries as point mass is not sufficient to describe the dynamic problem.Over the past decades, several modifications have been proposed to include different additional parameters in the effective potential, such as the oblateness, the triaxiality, or the radiation of the two massive primaries (AbdulRaheem and Singh, 2008) (Beatty and Chaikin, 1999) (Radwan and Abd El Motelp, 2021) (Sharma and Subba, 1975) (Zahra et. al, 2017), and (Zotos, 2020). The mentioned reasons motivated us to study the dynamics of the problem under the influence of the real shape of the primaries. Furthermore, periodic orbits give more insights into a better understanding of the complex dynamical system of the restricted problem. Therefore, the crucial need for periodic orbits motivated us to study these orbits when both primaries are prolate spheroids.3.DYNAMICAL MODELThe current dynamical system contains an infinitesimal mass that rotates in the orbital plane of the two massive bodies, the primary m1 and the secondary mass m2. The third infinitesimal one is considered to act as a test particle while the two primaries are prolate triaxial and circulate about their common centre of mass. The motion of the infinitesimal body doesn’t have any dynamic impact on the motion of the main bodies, due to its insignificant mass. In order to remove the time dependence from the equations of motion, it is better to use a synodic-rotating frame that rotates with constant angular velocity about the z-axis. The origin of the reference frame is centered at the barycentre of the system, and the x-axis lies on the line joining the two primary bodies. For convenience, we use a units system where the constant of gravity G and the distance between the centers of the two primaries are both equal to unity. Utilizing the reduced mass μ=m1m1+m2$$\mu = {{{m_1}} \over {{m_1} + {m_2}}}$$, we can express the dimensionless masses of the two primaries as m1 = 1 – μ and m2 = μ. Following the notations of Szebehely, (1967), the equations of motion of the tiny object in the dimensionless rotating-synodic frame are given by1x¨−2 n y˙=∂U∂x,  y¨+2 n x˙=∂U∂y,$$\matrix{{\mathop x\limits^{\unicode{x00A8}} - 2\,n\,\dot y = {{\partial U} \over {\partial x}},} & {\,\,\,\,\,\,\,\mathop y\limits^{\unicode{x00A8}} + 2\,n\,\dot x = } \cr } {{\partial U} \over {\partial y}},$$where the amended potential function U can be written as2U=n22(x2+y2)+(1−μ)r1(1+Aσ2 r12)+μr2(1+Aγ2 r22)$$U = {{{n^2}} \over 2}({x^2} + {y^2}) + {{(1 - \mu )} \over {{r_1}}}(1 + {{{A_\sigma }} \over {2\,r_1^2}}) + {\mu \over {{r_2}}}(1 + {{{A_\gamma }} \over {2\,r_2^2}})$$and3r1=(x+μ)2+y2,r2=(x+μ−1)2+y2,\begin{array}{*{35}{l}}{{r}_{1}}=\sqrt{{{\left( x+\mu \right)}^{2}}+{{y}^{2}},} \\{{r}_{2}}=\sqrt{{{\left( x+\mu -1 \right)}^{2}}+{{y}^{2}},} \\\end{array}\The perturbed mean motion of the primaries is given by4n=1a(1+32(Aγ+Aσ)(1+e2)),$$n = \sqrt {{1 \over a}(1 + {3 \over 2}({A_\gamma } + {A_\sigma })(1 + {e^2}))} ,$$where r1 and r2 are the distances of the two massive bodies from the infinitesimal third body. Aγ and Aσ represent the prolateness coefficients. a and e are the semi-major axis and eccentricity of either primary, respectively.4.THE LOCATIONS OF THE TRIANGULAR POINTSThe locations of the equilibrium triangular points L4 and L5 can be obtained by setting all relative velocity and relative acceleration components equal to zero and solving the resulting system of equations Ux = Uy = 0. The first derivatives of the potential function can be written as5Ux=n2x−(3 Aγ+2 r22)μ(−1+x+μ)2 r25−(−1+μ)     (x+μ)[ 3 Aσ2 r15−1r13 ]\begin{array}{*{35}{l}}{{U}_{x}}={{n}^{2}}x-\frac{\left( 3\,{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}+2\,r_{2}^{2} \right)\mu \left( -1+x+\mu \right)}{2\,r_{2}^{5}}-\left( -1+\mu \right) \\\,\,\,\,\,\left( x+\mu \right)\left[ \frac{3\,{{A}_{\sigma }}}{2\,r_{1}^{5}}-\frac{1}{r_{1}^{3}} \right] \\\end{array}\6Uy=y[ n2+  (−1+μ)(3 Aσ2 r15+1r13)−μ(3 Aγ2 r25+1r23) ]$${U_y} = y\left[ {{n^2} + \,\,( - 1 + \mu )\left( {{{3\,{A_\sigma }} \over {2\,r_1^5}} + {1 \over {r_1^3}}} \right) - \mu \left( {{{3\,{A_\gamma }} \over {2\,r_2^5}} + {1 \over {r_2^3}}} \right)} \right]$$Since the perturbations considered in the present work are small, i.e., the prolateness coefficients are much smaller than unity, therefore, we can ignore its values (i.e., r1 = r2 = 1). Then it may be reasonable here to suppose that the locations of the triangular points L4,5 are the same as given by classical restricted problem but perturbed by terms δ1, δ2=OAγ, Aσ$${\delta _2} = {\cal O}\left( {{A_\gamma },\,{A_\sigma }} \right)$$). In this case, the solution of the classical restricted problem can be written as7ri=1+δi,δi<<1,(i=1,  2).$$\matrix{{{r_i} = 1 + {\delta _i},} & {{\delta _i} < < 1,} & {(i = 1,\,\,2)} \cr } .$$Using equations (5) and (6) and solving for x and y up to order one in the involved small quantities δ1, δ2, we obtain8x=12(2 δ1−2 δ2−2 μ+1),y=±321+43  (δ1+δ2),$$\matrix{{x = {1 \over 2}(2\,{\delta _1} - 2\,{\delta _2} - 2\,\mu + 1),} & {y = \pm } \cr } {{\sqrt 3 } \over 2}\sqrt {1 + {4 \over 3}\,\,({\delta _1} + {\delta _2})} ,$$Substituting the values of x, y, r1, and r2 into equations (5) and (6), and expanding the resulting equations, we can retained only first order terms in δ1, δ2. Therefore, we get9δ1=13−13 a(1+e2+32Aγ(1+e2)+Aσ(1+e2)),δ2=13−13 a(1+e2+32Aσ(1+e2)+Aγ(1+e2)).\begin{array}{*{35}{l}}{{\delta }_{1}}=\frac{1}{3}-\frac{1}{3\,a}\left( 1+{{e}^{2}}+\frac{3}{2}{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left( 1+{{e}^{2}} \right) \right), \\{{\delta }_{2}}=\frac{1}{3}-\frac{1}{3\,a}\left( 1+{{e}^{2}}+\frac{3}{2}{{A}_{\sigma }}\left( 1+{{e}^{2}} \right)+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( 1+{{e}^{2}} \right) \right). \\\end{array}\Substituting the values of δ1, δ2 into equations (8) yields the coordinates of the equilibrium triangular points10x=12−μ−Aγ6 a(1+e2)+Aσ6 a(1+e2),y=±318[ 13−(1+e2)[ 4a+5a(Aγ+Aσ) ] ]\begin{array}{*{35}{l}}x=\frac{1}{2}-\mu -\frac{{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}}{6\,a}\left( 1+{{e}^{2}} \right)+\frac{{{A}_{\sigma }}}{6\,a}\left( 1+{{e}^{2}} \right), \\y=\pm \frac{\sqrt{3}}{18}\left[ 13-\left( 1+{{e}^{2}} \right)\left[ \frac{4}{a}+\frac{5}{a}\left( {{A}_{\text{ }\!\!\gamma\!\!\text{ }}}+{{A}_{\sigma }} \right) \right] \right] \\\end{array}\Note that if we ignore the involved perturbations, equations (10) will lead to the corresponding classical one.5.PERIODIC ORBITSIt is well known that periodic orbits are of great importance, and they represent the backbone of studying the behavior of dynamic systems in the field of celestial mechanics. Let the locations of the equilibrium points be given as (xL4,5, yL4,5). Let us give the equilibrium points a small displacement (ξ0, η0), i.e., ξ0, η0 ≪ 1. We have11x=xL4,5+ξ0,y=yL4,5+η0\begin{matrix}x={{x}_{{{L}_{4,5}}}}+{{\xi }_{0}}, & y={{y}_{{{L}_{4,5}}}}+{{\eta }_{0}} \\\end{matrix}\Then the corresponding characteristic equation of the current problem is given by Szebehely, (1967)12λ4+  (4 n2−  UxxL4,5−  UyyL4,5)λ2+  UxxL4,5 UyyL4,5−  (UxyL4,5)2=0$${\lambda ^4} + \,\,(4\,{n^2} - \,\,U_{xx}^{{L_{4,5}}} - \,\,U_{yy}^{{L_{4,5}}}){\lambda ^2} + \,\,U_{xx}^{{L_{4,5}}}\,U_{yy}^{{L_{4,5}}} - \,\,{(U_{xy}^{{L_{4,5}}})^2} = 0$$where13UxxL4,5=−12+54 a(1+e2)+Aσ[ −32+338 a(1+e2)+3 μ2−11 μ4 a(1+e2) ]+Aγ[ 118 a(1+e2)−3 μ2+−11 μ4 a(1+e2) ],[\begin{array}{*{35}{l}}U_{xx}^{_{{{L}_{4,5}}}}=\frac{-1}{2}+\frac{5}{4\,a}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left[ \frac{-3}{2}+\frac{33}{8\,a}\left( 1+{{e}^{2}} \right)+\frac{3\,\mu }{2}-\frac{11\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right] \\\,\,\,\,\,\,\,\,\,\,+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left[ \frac{11}{8\,a}\left( 1+{{e}^{2}} \right)-\frac{3\,\mu }{2}+-\frac{11\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right], \\\end{array}\14UyyL4,5=12+74 a(1+e2)+Aσ[ −32+598 a(1+e2)+3 μ2−17 μ4 a(1+e2) ]+Aγ[ 258 a(1+e2)−3 μ2+17 μ4 a(1+e2) ],\begin{array}{*{35}{l}}U_{yy}^{{{L}_{4,5}}}=\frac{1}{2}+\frac{7}{4\,a}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left[ \frac{-3}{2}+\frac{59}{8\,a}\left( 1+{{e}^{2}} \right)+\frac{3\,\mu }{2}-\frac{17\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right] \\\,\,\,\,\,\,\,\,\,\,+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left[ \frac{25}{8\,a}\left( 1+{{e}^{2}} \right)-\frac{3\,\mu }{2}+\frac{17\,\mu }{4\,a}\left( 1+{{e}^{2}} \right) \right], \\\end{array}\and15UxyL4,5=33 [−12+114 a(1+e2)+(1−112 a(1+e2))  μ+Aγ( 298 a(1+e2)+(5             −352 a(1+e2)μ ) )+Aσ(−5+1118 a(1+e2)+(5−352 a(1+e2)  μ)) ].\begin{array}{*{35}{l}}U_{xy}^{{{L}_{4,5}}}=\frac{\sqrt{3}}{3}\left[ \frac{-1}{2}+\frac{11}{4\,a}\left( 1+{{e}^{2}} \right)+\left( 1-\frac{11}{2\,a}\left( 1+{{e}^{2}} \right) \right)\,\,\mu +{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( \frac{29}{8\,a}\left( 1+{{e}^{2}} \right)+\left( 5 \right. \right. \right. \\\left. \left. \left. \,\,\,\,\,\,\,\,\,\,-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right)\mu \right) \right)+{{A}_{\sigma }}\left( -5+\frac{111}{8\,a}\left( 1+{{e}^{2}} \right)+\left( 5-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right)\,\,\mu \right) \right) \right]. \\\end{array}\UxxL4,5$$U_{xx}^{{L_{4,5}}}$$, UyyL4,5$$U_{yy}^{{L_{4,5}}}$$ and UxyL4,5$$U_{xy}^{{L_{4,5}}}$$ are the second partial derivatives of the amended potential function evaluated at the triangular points. The roots of the characteristic polynomial λi, of the present system, in the range 0 ≤ μ ≤ μcritical, are purely imaginary. Therefore, the motion about the triangular equilibrium points L4,5 is stable and composed of two harmonic motions governed by the variations16ξ=C1cos s1t+D1sin s1t+C2 cos s2t+D2 sin s2t,η=C¯1 cos s1 t+D¯1 sin s1t+C¯2 cos s2 t+D¯2 sin s2t\begin{array}{*{35}{l}}\xi ={{C}_{1}}\cos \,{{s}_{1}}t+{{D}_{1}}\sin \,{{s}_{1}}t+{{C}_{2}}\cos \,{{s}_{2}}t+{{D}_{2}}\sin \,{{s}_{2}}t, \\\eta ={{{\bar{C}}}_{1}}\cos {{s}_{1}}t+{{{\bar{D}}}_{1}}\sin {{s}_{1}}t+{{{\bar{C}}}_{2}}\cos {{s}_{2}}t+{{{\bar{D}}}_{2}}\sin {{s}_{2}}t \\\end{array}\where s1, s2 are the frequencies for long and short periodic orbits, respectively. The coefficients C1, D1, C¯1$${\bar C_1}$$, and D¯1$${\bar D_1}$$ are the long periodic terms, while the coefficients C2, D2, C¯2$${\bar C_2}$$, and D¯2$${\bar D_2}$$ are the short periodic terms. The frequencies s1, and s2 are given up to order μ2 as17s1=13226944 [ 9821a(1+e2)(−5488+47432 μ+157542μ2)−7Aσ( 16464( −42      +25 21a )−392(−1764+257321a)  μ+732408621aμ2+21ae2( 411600       −1008616μ+7324086 μ2 ) )+7Aγ( −7134421a+392(1764+833921a)       μ+2197872621aμ2+21ae2(−71344+3268888 μ+21978726 μ2) )−6 a21     (−1+e2)( Aσ(44688+165592 μ−13661634 μ2)+14( −784+1624 μ+128330 μ2     +Aγ(−2352−429352 μ+2817990 μ2)+14 [ 8( 686(421+21a)+14406ae2      +862421 μ+168399 21 μ2−Aσ [ −85456 21+633864a+56( 933521−      14406μa )+9481146 21 μ2−57624ae2(−11+14 μ) ]+8 Aγ( 147( −8 21      +147a )−14(64 21+7203a)  μ+1077477 21 μ2−7203ae2(−3+14 μ) ) ].\begin{array}{*{35}{l}}{{s}_{1}}=\frac{1}{3226944}\left[ 98\frac{\sqrt{21}}{a}\left( 1+{{e}^{2}} \right)\left( -5488+47432\,\mu +157542{{\mu }^{2}} \right)-7{{A}_{\sigma }}\left( 16464\left( -42 \right. \right. \right. \\\left. \,\,\,\,\,+\frac{25\,\sqrt{21}}{a} \right)-392\left( -1764+2573\frac{\sqrt{21}}{a} \right)\,\,\mu +7324086\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}}\left( 411600 \right. \\\left. \left. \,\,\,\,\,\,-1008616\mu +7324086\,{{\mu }^{2}} \right) \right)+7{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -71344\frac{\sqrt{21}}{a}+392\left( 1764+8339\frac{\sqrt{21}}{a} \right) \right. \\\left. \,\,\,\,\,\,\mu +21978726\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}}\left( -71344+3268888\,\mu +21978726\,{{\mu }^{2}} \right) \right)-6\,a\sqrt{21} \\\,\,\,\,\,\left( -1+{{e}^{2}} \right)\left( {{A}_{\sigma }}\left( 44688+165592\,\mu -13661634\,{{\mu }^{2}} \right)+14\left( -784+1624\,\mu +128330\,{{\mu }^{2}} \right. \right. \\\,\,\,\,\,+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -2352-429352\,\mu +2817990\,{{\mu }^{2}} \right)+14\left[ 8\left( 686\left( 4\sqrt{21}+\frac{21}{a} \right)+\frac{14406}{a}{{e}^{2}} \right. \right. \\\,\,\,\,\,+8624\sqrt{21}\,\mu +168399\,\sqrt{21}\,{{\mu }^{2}}-{{A}_{\sigma }}\left[ -85456\,\sqrt{21}+\frac{633864}{a}+56\left( 9335\sqrt{21}- \right. \right. \\\left. \left. \,\,\,\,\,14406\frac{\mu }{a} \right)+9481146\,\sqrt{21}\,{{\mu }^{2}}-\frac{57624}{a}{{e}^{2}}\left( -11+14\,\mu \right) \right]+8\,{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( 147\left( -8\,\sqrt{21} \right. \right. \\\left. \left. \left. \,\,\,\,\,+\frac{147}{a} \right)-14\left( 64\,\sqrt{21}+\frac{7203}{a} \right)\,\,\mu +1077477\,\sqrt{21}\,{{\mu }^{2}}-\frac{7203}{a}{{e}^{2}}\left( -3+14\,\mu \right) \right) \right]. \\\end{array}\and18s2=13226944 [ −9821a(1+e2)(−5488+47432 μ+157542μ2)+7Aσ( 16464       (42+25 21a)−392(1764+257321a)  μ+732408621aμ2+21ae2       ( 411600−1008616μ+7324086 μ2 )−7Aγ( −7134421a+392( −1764+8339        21a )μ+2197872621aμ2+21ae2(−71344+3268888 μ+21978726 μ2) )     +6 a 21  (−1+e2)( Aσ(44688+165592 μ−13661634 μ2)+14( −784+1624 μ      +128330 μ2 )+Aγ (−2352−429352 μ+2817990 μ2) )−14 [ 8( 686(4 21−21a)      −14406ae2 +8624 21 μ+168399 21 μ2−Aσ [ −392 (218 21+1617a)      +56  ( 9335 21+144061a )μ+9481146 21 μ2+57624ae2(−11+14 μ) ]      +8 Aγ( −147( 8 21+147a )−14(64 21−72031a)  μ+107747721       μ2+7203ae2(−3+14 μ) ) ].\begin{array}{*{35}{l}}{{s}_{2}}=\frac{1}{3226944}\left[ -98\frac{\sqrt{21}}{a}\left( 1+{{e}^{2}} \right)\left( -5488+47432\,\mu +157542{{\mu }^{2}} \right)+7{{A}_{\sigma }}\left( 16464 \right. \right. \\\,\,\,\,\,\,\left( 42+\frac{25\,\sqrt{21}}{a} \right)-392\left( 1764+2573\frac{\sqrt{21}}{a} \right)\,\,\mu +7324086\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}} \\\left. \,\,\,\,\,\,\left( 411600 \right.-1008616\mu +7324086\,{{\mu }^{2}} \right)-7{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -71344\frac{\sqrt{21}}{a}+392\left( -1764+8339 \right. \right. \\\left. \,\,\,\,\,\,\left. \frac{\sqrt{21}}{a} \right)\mu +21978726\frac{\sqrt{21}}{a}{{\mu }^{2}}+\frac{\sqrt{21}}{a}{{e}^{2}}\left( -71344+3268888\,\mu +21978726\,{{\mu }^{2}} \right) \right) \\\,\,\,\,\,+6\,a\,\sqrt{21}\,\,\left( -1+{{e}^{2}} \right)\left( {{A}_{\sigma }}\left( 44688+165592\,\mu -13661634\,{{\mu }^{2}} \right)+14\left( -784+1624\,\mu \right. \right. \\\left. \,\,\,\,\,+128330\,{{\mu }^{2}} \right)+{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left. \left( -2352-429352\,\mu +2817990\,{{\mu }^{2}} \right) \right)-14\left[ 8\left( 686\left( 4\,\sqrt{21}-\frac{21}{a} \right) \right. \right. \\\,\,\,\,\,-\frac{14406}{a}{{e}^{2}}\,+8624\,\sqrt{21}\,\mu +168399\,\sqrt{21}\,{{\mu }^{2}}-{{A}_{\sigma }}\left[ -392\,\left( 218\,\sqrt{21}+\frac{1617}{a} \right) \right. \\\left. \left. \,\,\,\,\,+56\,\,\left( 9335\,\sqrt{21}+ \right.14406\frac{1}{a} \right)\mu +9481146\,\sqrt{21}\,{{\mu }^{2}}+\frac{57624}{a}{{e}^{2}}\left( -11+14\,\mu \right) \right] \\\left. \,\,\,\,\,+8\,{{A}_{\text{ }\!\!\gamma\!\!\text{ }}}\left( -147\left( 8\,\sqrt{21} \right. \right.+\frac{147}{a} \right)-14\left( 64\,\sqrt{21}-7203\frac{1}{a} \right)\,\,\mu +1077477\sqrt{21} \\\left. \left. \,\,\,\,\,\,{{\mu }^{2}}+\frac{7203}{a}{{e}^{2}}\left( -3+14\,\mu \right) \right) \right]. \\\end{array}\It can be seen from equations (17) and (18) that the frequencies of the orbit of both short and long periodic motions are affected by the prolateness coefficients of the primaries, the mass ratio, the semi-major axis a, and the eccentricity e. as can be seen in the following illustrative graphs:Figs. 1a and 1b illustrate the variations of the two frequencies s2 and s1 for different values of the prolateness coefficients Aσ, Aγ and e = 0.07, a = 0.94. Figs. 2a and 2b depict the variations of the short- and long-periodic frequencies s2 and s1 with the mass ratio μ for different values of the eccentricity of either primary (e = 0.05, 0.09, 0.4, Aσ = −0.06, Aγ = −0.04, and a = 0.94). It is observed that, in the above mentioned curves, the short-period frequency s2 is a decreasing function, while the long-period frequency s1 is an increasing one. Figs. 3a and 3b depict the variations of the long- ,and short periodic frequencies s1 and s2 with the mass parameter μ, for different values of the semi-major axis (a = 0.90, 0.95, 0.99). The figures show that the long period frequency, s1, is an increasing function, while the short-period frequency, s2 is a decreasing function. Figs. 4a, and 4b depict the variations in angular frequencies s1, and s2 under the effect of the perturbation considered in comparison with the classical case. It can be seen from both figures the effect of the perturbing forces on the behavior of the curves representing the angular frequencies. The perturbing forces cause these curves to depart from the classical case.Figure 1.a.The variation of short-period frequency versus mass parameter μ for different values of the plorate triaxialityFigure 1.b.The variation of long-period frequency versus mass parameter μ for different values of the plorate triaxiality parameterFigure 2.a.Eccentricity effect on the short-period frequencyFigure 2.b.Eccentricity effect on the long-period frequencyFigure 3.a.The variations of s2 versus mass parameter μ for different values of semi-major axis (a = 0.90, 0.95, 0.99), with fixed values of Aσ = −0.004, Aγ = −0.006, and e = 0.06Figure 3.b.The variations of s1 versus the mass parameter μ for different values of the semimajor axis (a = 0.90, 0.95, 0.99), with fixed plorateness triaxiality coefficients Aγ = −0.006, Aσ = −0.004, and e = 0.06Figure 4.a.Comparing the long-period frequency for some selected cases with the classical caseFigure 4.b.Comparing the short-period frequency for some selected cases with the classical case6.ELLIPTICAL ORBITSThe expansion of the amended potential function U about the triangular equilibrium points L4,5 is19U=UL4,5+  UxxL4,5ξ2+  UyyL4,5η2+  UxyL4,5ξη+O(3)$$U = {U^{{L_{4,5}}}} + \,\,U_{xx}^{{L_{4,5}}}{\xi ^2} + \,\,U_{yy}^{{L_{4,5}}}{\eta ^2} + \,\,U_{xy}^{{L_{4,5}}}\xi \eta + {\cal O}(3)$$As we can see equation (19) is quadratic, thus, the periodic orbits around the libration points L4,5 are elliptical, since the Hessian UxxUyy−Uxy2>0$${U_{xx}}{U_{yy}} - U_{xy}^2 > 0$$.6.1.Orientation of the principal axes of the ellipsesEquation (19) can be expressed in the form20U=L ξ2+  M ξ η+N η2+  U0$$U = L\,{\xi ^2} + \,\,M\,\xi \,\eta + N\,{\eta ^2} + \,\,{U_0}$$where21L=−14+58 a+5 e28 a+Aσ(−34+3316 a(1+e2)+μ(34−118 a(1+e2)))+    Aγ(1116(1+e2)+(−34+μ1116 a(1+e2))),\begin{array}{*{35}{l}}L=\frac{-1}{4}+\frac{5}{8\,a}+\frac{5\,{{e}^{2}}}{8\,a}+{{A}_{\sigma }}\left( -\frac{3}{4}+\frac{33}{16\,a}\left( 1+{{e}^{2}} \right)+\mu \left( \frac{3}{4}-\frac{11}{8\,a}\left( 1+{{e}^{2}} \right) \right) \right)+ \\\,\,\,\,A\gamma \left( \frac{11}{16}\left( 1+{{e}^{2}} \right)+\left( \frac{-3}{4}+\mu \frac{11}{16\,a}\left( 1+{{e}^{2}} \right) \right) \right), \\\end{array}\22M=33 [ −12+114 a(1+e2)+μ(1−112 a(1+e2))+Aγ( 298 a(1+e2)+        (5−352 a(1+e2))μ )+Aσ(−5+1118 a(1+e2)+(5−352 a(1+e2))) ],\begin{array}{*{35}{l}}M=\frac{\sqrt{3}}{3}\left[ \frac{-1}{2}+\frac{11}{4\,a}\left( 1+{{e}^{2}} \right)+\mu \left( 1-\frac{11}{2\,a}\left( 1+{{e}^{2}} \right) \right)+{{A}_{\gamma }}\left( \frac{29}{8\,a}\left( 1+{{e}^{2}} \right) \right.+ \right. \\\left. \left. \,\,\,\,\,\,\,\left( 5-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right) \right)\mu \right)+{{A}_{\sigma }}\left( -5+\frac{111}{8\,a}\left( 1+{{e}^{2}} \right)+\left( 5-\frac{35}{2\,a}\left( 1+{{e}^{2}} \right) \right) \right) \right], \\\end{array}\23N=14+78 a(1+e2)+Aσ(−34+5916 a(1+e2))+μ(34−178 a(1+e2))+     Aγ(2516 a(1+e2)+μ(−38+178 a(1+e2))),\begin{array}{*{35}{l}}N=\frac{1}{4}+\frac{7}{8\,a}\left( 1+{{e}^{2}} \right)+{{A}_{\sigma }}\left( \frac{-3}{4}+\frac{59}{16\,a}\left( 1+{{e}^{2}} \right) \right)+\mu \left( \frac{3}{4}-\frac{17}{8\,a}\left( 1+{{e}^{2}} \right) \right)+ \\\,\,\,\,\,{{A}_{\gamma }}\left( \frac{25}{16\,a}\left( 1+{{e}^{2}} \right)+\mu \left( \frac{-3}{8}+\frac{17}{8\,a}\left( 1+{{e}^{2}} \right) \right) \right), \\\end{array}\and24U0=23−527 a2+5954 a+(−1027 a2+5954 a)  e2−μ2 a(1+e2)+μ22 a(1+e2)+     Aσ( −2354 a2+7136 a+e2(−2327 a2+7136 a)−( 16 a2+1312 a+(13 a2+1312 a)      e2 )μ+34 a(1+e2) μ2 )+Aγ( −1627 a2+5936 a+e2(−3227 a2+5936 a)     +(16 a2−512 a+(13 a2−512 a)e2)  μ+34 a(1+e2) μ2 )\[\begin{array}{*{35}{l}}{{U}_{0}}=\frac{2}{3}-\frac{5}{27\,{{a}^{2}}}+\frac{59}{54\,a}+\left( \frac{-10}{27\,{{a}^{2}}}+\frac{59}{54\,a} \right)\,\,{{e}^{2}}-\frac{\mu }{2\,a}\left( 1+{{e}^{2}} \right)+\frac{{{\mu }^{2}}}{2\,a}\left( 1+{{e}^{2}} \right)+ \\\,\,\,\,\,{{A}_{\sigma }}\left( \frac{-23}{54\,{{a}^{2}}}+\frac{71}{36\,a}+{{e}^{2}}\left( \frac{-23}{27\,{{a}^{2}}}+\frac{71}{36\,a} \right)-\left( \frac{1}{6\,{{a}^{2}}}+\frac{13}{12\,a}+\left( \frac{1}{3\,{{a}^{2}}}+\frac{13}{12\,a} \right) \right. \right. \\\left. \,\,\,\,\,{{e}^{2}} \right)\mu +\frac{3}{4\,a}\left( 1+{{e}^{2}} \right)\left. {{\mu }^{2}} \right)+{{A}_{\gamma }}\left( \frac{-16}{27\,{{a}^{2}}}+\frac{59}{36\,a}+{{e}^{2}}\left( \frac{-32}{27\,{{a}^{2}}}+\frac{59}{36\,a} \right) \right. \\\,\,\,\,\,+\left( \frac{1}{6\,{{a}^{2}}}-\frac{5}{12\,a}+\left( \frac{1}{3\,{{a}^{2}}}-\frac{5}{12\,a} \right){{e}^{2}} \right)\,\,\mu +\frac{3}{4\,a}\left( 1+{{e}^{2}} \right)\left. {{\mu }^{2}} \right) \\\end{array}\]25ξ=ξ¯cosθ−η¯sinθ,η=ξ¯sinθ+η¯cosθ.\[\begin{matrix}\xi =\bar{\xi }\cos \theta -\bar{\eta }\sin \theta , & \eta = \\\end{matrix}\bar{\xi }\sin \theta +\bar{\eta }\cos \theta .\]Hence, the new form of equation (20), is given asU=L¯ξ¯2+N¯η¯2+  U¯0\[U=\bar{L}{{\bar{\xi }}^{2}}+\bar{N}{{\bar{\eta }}^{2}}+\,\,{{\bar{U}}_{0}}\]where L¯$$\bar L$$, N¯$$\bar N$$, and Ū0 are new modified quantities. It is easily seen from equation (20) that the periodic orbits around the triangular points L4,5 are elliptical. Setting the term that contains η¯ξ¯$$\bar \eta \bar \xi $$ equal to zero, we have26tan2θ=2 UxyUxx−Uyytan2θ=±33  [ 4 a+(1+e2)(2+Aσ(13−6μ)+Aγ(7+6μ)) ] [ (1+e2) [ −22         −29Aγ−111Aσ+μ(44+140  (Aγ+Aσ)) ]+4 a [ 1+10Aσ−10 μ (15+Aγ+Aσ) ] ]\[\begin{matrix}\tan 2\theta =\frac{2\,{{U}_{xy}}}{{{U}_{xx}}-{{U}_{yy}}} \\\tan 2\theta =\pm \frac{\sqrt{3}}{3\,\,[4\,a+(1+{{e}^{2}})(2+{{A}_{\sigma }}(13-6\mu )+{{A}_{\gamma }}(7+6\mu ))]}[(1+{{e}^{2}})[-22 \\\,\,\,\,\,\,\,\,-29{{A}_{\gamma }}-111{{A}_{\sigma }}+\mu (44+140\,\,({{A}_{\gamma }}+{{A}_{\sigma }}))]+4\,a[1+10{{A}_{\sigma }}-10\,\mu \\(\frac{1}{5}+{{A}_{\gamma }}+{{A}_{\sigma }})]] \\\end{matrix}\]where the plus sign (minus sign) refers to the centre of the ellipse at L4,5.6.2.Eccentricities of the ellipsesIn order to obtain the eccentricities of the ellipses, we use the equations Szebehely, (1967)27e1=(1−α12)12\[{{e}_{1}}={{\left( 1-\alpha _{1}^{2} \right)}^{\frac{1}{2}}}\]28e2=(1−α22)12\[{{e}_{2}}={{\left( 1-\alpha _{2}^{2} \right)}^{\frac{1}{2}}}\]and29αi=2sisi2+λ¯1=si2+λ¯22 si\[{{\alpha }_{i}}=\frac{2{{s}_{i}}}{s_{i}^{2}+{{{\bar{\lambda }}}_{1}}}=\frac{s_{i}^{2}+{{{\bar{\lambda }}}_{\text{2}}}}{2\,{{s}_{i}}}\]]where λ¯1$${{\rm{\bar \lambda }}_1}$$ and λ¯2$${{\rm{\bar \lambda }}_2}$$ are the roots of the characteristic equation. For i = 1, 2, with similar expression for α2, we have30α1=−13687936 a350981+22977173 [ 392−3+21 (1+e2)  ( 28     ( 5838−1274 21+(−903+197 21)Aγ+(151431−3305  21) Aσ )+     ( −4091010+892738 21+(−17969553+32921313 21)Aγ+( −8382927      +1829311 21 ) Aσ ) μ )+48 −3+21( −2415+527 21 a2(−1+e2)     (196−798Aσ−406 μ−2957Aσμ+Aγ(42+7667μ))+21 2 a52     (−2+3 e2)( 336(74641 3−48864 7)Aγ+( 10727940055 3−      70230856177 )Aγ μ+(−152436875591 3+99793363029 7)Aσ μ−     28( −1466864 3+960288 7+67642792 3 Aσ μ−44282604 7Aσ−      775851233 μ+50791389 7μ ) )+92 a72(−2+5 e2)( Aγ( 29997212      3−19637772 7+52699894653 3 μ−34500179898 7μ )+28( 4895492      3−3204852 7+422762921 3 μ−276763308 7 μ )+Aσ( −9040057628      3+5918107020 7−10526335657773 3​ μ+689111808570 7 μ ) )+     112 −3+21 a( 56(−2415+527 21)(7+22 μ)+Aσ( −6938988+      1514212 21+25797723 μ−5629555 21 μ )+Aγ( 405720−88536 21−      2944578μ+642554 21 μ ) )+294 2 a32(−2+e2)( Aγ( 1449028 3−      948612 7+235533725 3 μ−154193028 7 μ )+Aσ( −502969323      +32927076 7−2310568225 3 μ+1512622056 7 μ )+28( 70700 3−      46284 7+121(13097 3−8574 7)  μ ) ) ].\[\begin{array}{*{35}{l}}{{\alpha }_{1}}=\frac{-1}{\text{3687936}\,a}\sqrt{\text{350981}+\text{229771}\sqrt{\frac{7}{3}}}\left[ 392\sqrt{-3+\sqrt{21}} \right.\left( 1+{{e}^{2}} \right)\,\,\left( 28 \right. \\\,\,\,\,\,\left( \text{5838}-\text{1274}\,\sqrt{21}+\left( -903+197\,\sqrt{21} \right){{A}_{\gamma }}+\left( \text{151431}-\text{3305}\,\,\sqrt{21} \right)\left. {{A}_{\sigma }} \right)+ \right. \\\,\,\,\,\,\left( -\text{4091010}+\text{892738}\,\sqrt{21}+\left( -\text{17969553}+\text{32921313}\,\sqrt{21} \right){{A}_{\gamma }}+\left( -\text{8382927} \right. \right. \\\left. \,\,\,\,\,+\text{1829311}\,\sqrt{21} \right)\left. {{A}_{\sigma }} \right)\left. \mu \right)+48\,\sqrt{-3+\sqrt{21}}\left( -\text{2415}+\text{527}\,\sqrt{21}\,{{a}^{2}}\left( -1+{{e}^{2}} \right) \right. \\\,\,\,\,\,\left( 169-798{{A}_{\sigma }}-406\,\mu -2957{{A}_{\sigma }}\mu +{{A}_{\gamma }}\left( 42+\text{7667}\mu \right) \right)+21\,\sqrt{2}\,{{a}^{\frac{5}{2}}} \\\,\,\,\,\,\left( -2+3\,{{e}^{2}} \right)\left( 336\left( \text{74641}\,\sqrt{3}-\text{48864}\,\sqrt{7} \right) \right.{{A}_{\gamma }}+\left( \text{10727940055}\,\sqrt{3}- \right. \\\left. \,\,\,\,\,\text{7023085617}\sqrt{7} \right){{A}_{\gamma }}\,\mu +\left( -\text{152436875591}\,\sqrt{3}+\text{99793363029}\,\sqrt{7} \right){{A}_{\sigma }}\,\mu - \\\,\,\,\,\,28\left( -\text{1466864}\,\sqrt{3}+\text{960288}\,\sqrt{7}+\text{67642792}\,\sqrt{3}\,{{A}_{\sigma }}\,\mu -\text{44282604}\,\sqrt{7}{{A}_{\sigma }}- \right. \\\left. \left. \,\,\,\,\,\text{77585123}\sqrt{3}\,\mu +\text{50791389}\,\sqrt{7}\mu \right) \right)+9\sqrt{2}\,{{a}^{\frac{7}{2}}}\left( -2+5\,{{e}^{2}} \right)\left( {{A}_{\gamma }}\left( \text{29997212} \right. \right. \\\left. \,\,\,\,\,\sqrt{3}-\text{19637772}\,\sqrt{7}+\text{52699894653}\,\sqrt{3}\,\mu -\text{34500179898}\,\sqrt{7}\mu \right)+28\left( \text{4895492} \right. \\\left. \,\,\,\,\,\sqrt{3}-\text{3204852}\,\sqrt{7}+\text{422762921}\,\sqrt{3}\,\mu -\text{276763308}\,\sqrt{7}\,\mu \right)+{{A}_{\sigma }}\left( -\text{9040057628} \right. \\\left. \left. \,\,\,\,\,\sqrt{3}+\text{5918107020}\,\sqrt{7}-\text{10526335657773}\,\sqrt{3}\,\mu +\text{689111808570}\,\sqrt{7}\,\mu \right) \right)+ \\\,\,\,\,\,112\,\sqrt{-3+\sqrt{21}}\,a\left( 56\left( -\text{2415}+\text{527}\,\sqrt{21} \right)\left( 7+22\,\mu \right)+{{A}_{\sigma }}\left( -\text{6938988}+ \right. \right. \\\left. \,\,\,\,\,\text{1514212}\,\sqrt{21}+\text{25797723}\,\mu -\text{5629555}\,\sqrt{21}\,\mu \right)+{{A}_{\gamma }}\left( \text{405720}-\text{88536}\,\sqrt{21}- \right. \\\left. \left. \,\,\,\,\,\text{2944578}\mu +\text{642554}\,\sqrt{21}\,\mu \right) \right)+294\,\sqrt{2}\,{{a}^{\frac{3}{2}}}\left( -2+{{e}^{2}} \right)\left( {{A}_{\gamma }}\left( \text{1449028}\,\sqrt{3}- \right. \right. \\\left. \,\,\,\,\,\text{948612}\,\sqrt{7}+\text{235533725}\,\sqrt{3}\,\mu -\text{154193028}\,\sqrt{7}\,\mu \right)+{{A}_{\sigma }}\left( -\text{50296932}\sqrt{3} \right. \\\left. \,\,\,\,\,+\text{32927076}\,\sqrt{7}-\text{2310568225}\,\sqrt{3}\,\mu +\text{1512622056}\,\sqrt{7}\,\mu \right)+28\left( \text{70700}\,\sqrt{3}- \right. \\\left. \left. \left. \,\,\,\,\,\text{46284}\,\sqrt{7}+121\left( \text{13097}\,\sqrt{3}-\text{8574}\,\sqrt{7} \right)\,\,\mu \right) \right) \right]. \\\end{array}\]Equation (26) determines the orientation of the orbits with respect to the rotational coordinate system. It is observed that the orientation of the orbits is affected by the involved perturbations. Equation (27) depicts, for i = 1, 2, the eccentricities of the short- and long-periodic orbits around the triangular points L4,5.We can observe that, from Fig. 5a, and 5b, the eccentricity of the long-period orbit decreases under the effect of the perturbations, while the eccentricity of the short-period one increases. Also, we see from the figures that the perturbed case are shifted from the classical case because of the influence of the disturbing forces. Ignoring all the perturbations considered in the present work, our results will be the same as those obtained by Szebehely, (1967).Figure. 5.a.Comparing the eccentricity of long period motion in the classical with a selected perturbed case.Figure 5.b.Comparing the eccentricity of short-period motion in the classical with a selected perturbed case.7.CONCLUSIONSIn this work, we have investigated the periodic orbits around the triangular libration points L4,5, in the range 0 < μ < μc. We formulated the problem in a more general way and used a more complex mathematical model than previously published papers that considered the classical case (Abouelmagd and Mostafa, 2015). The prolateness coefficients of both primaries are taken into account as a perturbing force. We investigated the variations of the angular frequencies for the long and the short periodic orbits. The variation of both frequencies is represented graphically versus the mass parameter μ for distinct values of the included perturbations. It is found that for small mass ratio μ, an increment in the perturbing forces results in a decrease in the frequency of the short-period orbit, while an increment in the same parameters will increase the frequency of the long-period one. Both frequencies coincide at the critical value of the mass parameter μc. In addition, we derived explicit expressions for the eccentricities e1 and e2 of the long and short-period orbits. We represented graphically both eccentricities versus the mass parameter. It is found that the eccentricities e1 and e2 of the long and short-period orbits are decreasing and increasing functions, respectively. Furthermore, we studied the orientation of the principle axes of the ellipses. It is observed that the included perturbing forces influence the orientation of the principal axes. The perturbing forces result in a change in the inclination angle of the orbits. Finally, in our opinion, we believe that the current research has special importance to space science applications to send spacecraft into stable regions in planetary systems.

Journal

Artificial Satellitesde Gruyter

Published: Mar 1, 2023

Keywords: restricted three-body problem; triangular points; prolate triaxial; periodic orbits

There are no references for this article.