Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Single-crystal X-ray diffraction of fluorapatite to 61 GPa

Single-crystal X-ray diffraction of fluorapatite to 61 GPa AbstractApatite is a mineral of widespread importance in Earth and planetary science. Here we examine the behavior of a natural fluorapatite (FAp) crystal from Durango (Mexico) under compression to 61 GPa. Single-crystal X-ray diffraction experiments were carried out in a diamond-anvil cell using a synchrotron source. The apatite structure persists up to 32.4 GPa. Birch-Murnaghan equation of state parameters were fit to the pressure-volume data for fluorapatite for two cases: fixing V0 at its measured ambient value resulted in a bulk modulus, K0T, of 97.0(8) GPa and a pressure derivative of the bulk modulus, K′0T, of 3.3(1), while fixing V0 and K0T at its ambient value 90.5 GPa (derived from ultrasonically measured elastic constants) resulted in a K′0T value of 4.1(1). At 35.6 GPa, fluorapatite transforms to a triclinic phase (P1, Z = 4), designated here as fluorapatite II (FAp-II). This phase persists up to at least 61 GPa. The major structural differences between FAp and FAp-II involve the buckling of the Ca polyhedra along the c-axis and changes in the number and coordination of the Ca sites. Our study extends the pressure range over which fluorapatite has been examined by more than a factor of three, providing new insights into its structural response to high-pressure conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Mineralogist de Gruyter

Single-crystal X-ray diffraction of fluorapatite to 61 GPa

Loading next page...
 
/lp/de-gruyter/single-crystal-x-ray-diffraction-of-fluorapatite-to-61-gpa-FoPJ0vQRUT

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
de Gruyter
Copyright
© 2023 by Mineralogical Society of America
ISSN
0003-004X
eISSN
1945-3027
DOI
10.2138/am-2022-8410
Publisher site
See Article on Publisher Site

Abstract

AbstractApatite is a mineral of widespread importance in Earth and planetary science. Here we examine the behavior of a natural fluorapatite (FAp) crystal from Durango (Mexico) under compression to 61 GPa. Single-crystal X-ray diffraction experiments were carried out in a diamond-anvil cell using a synchrotron source. The apatite structure persists up to 32.4 GPa. Birch-Murnaghan equation of state parameters were fit to the pressure-volume data for fluorapatite for two cases: fixing V0 at its measured ambient value resulted in a bulk modulus, K0T, of 97.0(8) GPa and a pressure derivative of the bulk modulus, K′0T, of 3.3(1), while fixing V0 and K0T at its ambient value 90.5 GPa (derived from ultrasonically measured elastic constants) resulted in a K′0T value of 4.1(1). At 35.6 GPa, fluorapatite transforms to a triclinic phase (P1, Z = 4), designated here as fluorapatite II (FAp-II). This phase persists up to at least 61 GPa. The major structural differences between FAp and FAp-II involve the buckling of the Ca polyhedra along the c-axis and changes in the number and coordination of the Ca sites. Our study extends the pressure range over which fluorapatite has been examined by more than a factor of three, providing new insights into its structural response to high-pressure conditions.

Journal

American Mineralogistde Gruyter

Published: Apr 1, 2023

Keywords: Apatite; high-pressure; diamond anvil cell; single-crystal X-ray diffraction

There are no references for this article.