Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractNitrogen is an essential element for life, one of the most abundant volatiles in the atmosphere, and an important component in the Earth’s interior, where iron nitride is an essential host of deep nitrogen. Here, we investigate the pressure-induced electronic spin-pairing transition of iron in siderazot (Fe3N1.2) at pressures up to 45.8 GPa at room temperature, using diamond-anvil cell techniques coupled with synchrotron X-ray emission spectroscopy. The integrated intensity of the satellite emission peak (K′β) decreases upon compression but remains unchanged at pressures greater than 30.5 GPa. In other words, the high-spin to low-spin transition of iron in Fe3N1.2 starts immediately at very low pressures and completes at ~30.5 GPa. The iron spin transition completion pressures increase with the nitrogen concentration of hexagonal close-packed iron nitrides (i.e., Fe3N1.2, Fe7N3, and Fe2N). Moreover, the identity and concentration of light elements in binary iron-rich compounds such as Fe3N, Fe3C, Fe3P, Fe3S, Fe7C3, and Fe7N3, together with their crystal structure, could affect the iron spin transition pressures. The spin transition of iron-rich alloys could alter the bonding nature and the physical properties, including the thermal and electrical conductivity, thereby influencing the thermal state and evolution of planetary interiors.
American Mineralogist – de Gruyter
Published: Apr 1, 2023
Keywords: Spin transition; X-ray emission spectroscopy; high pressure; deep nitrogen; Physics and Chemistry of Earth’s Deep Mantle and Core
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.