Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Data reconciliation and fusion methods: a survey

Data reconciliation and fusion methods: a survey With the progress of new technologies of information and communication, more and more producers of data exist. On the other hand, the web forms a huge support of all these kinds of data. Unfortunately, existing data is not proper due to the existence of the same information in different sources, as well as erroneous and incomplete data. The aim of data integration systems is to offer to a user a unique interface to query a number of sources. A key challenge of such systems is to deal with conflicting information from the same source or from different sources. We present, in this paper, the resolution of conflict at the instance level into two stages: references reconciliation and data fusion. The reference reconciliation methods seek to decide if two data descriptions are references to the same entity in reality. We define the principles of reconciliation method then we distinguish the methods of reference reconciliation, first on how to use the descriptions of references, then the way to acquire knowledge. We finish this section by discussing some current data reconciliation issues that are the subject of current research. Data fusion in turn, has the objective to merge duplicates into a single representation while resolving conflicts between the data. We define first the conflicts classification, the strategies for dealing with conflicts and the implementing conflict management strategies. We present then, the relational operators and data fusion techniques. Likewise, we finish this section by discussing some current data fusion issues that are the subject of current research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Computing and Informatics Emerald Publishing

Data reconciliation and fusion methods: a survey

Applied Computing and Informatics , Volume 18 (3/4): 13 – Jun 21, 2022

Data reconciliation and fusion methods: a survey

Applied Computing and Informatics , Volume 18 (3/4): 13 – Jun 21, 2022

Abstract

With the progress of new technologies of information and communication, more and more producers of data exist. On the other hand, the web forms a huge support of all these kinds of data. Unfortunately, existing data is not proper due to the existence of the same information in different sources, as well as erroneous and incomplete data. The aim of data integration systems is to offer to a user a unique interface to query a number of sources. A key challenge of such systems is to deal with conflicting information from the same source or from different sources. We present, in this paper, the resolution of conflict at the instance level into two stages: references reconciliation and data fusion. The reference reconciliation methods seek to decide if two data descriptions are references to the same entity in reality. We define the principles of reconciliation method then we distinguish the methods of reference reconciliation, first on how to use the descriptions of references, then the way to acquire knowledge. We finish this section by discussing some current data reconciliation issues that are the subject of current research. Data fusion in turn, has the objective to merge duplicates into a single representation while resolving conflicts between the data. We define first the conflicts classification, the strategies for dealing with conflicts and the implementing conflict management strategies. We present then, the relational operators and data fusion techniques. Likewise, we finish this section by discussing some current data fusion issues that are the subject of current research.

Loading next page...
 
/lp/emerald-publishing/data-reconciliation-and-fusion-methods-a-survey-NuwkzPOUQy
Publisher
Emerald Publishing
Copyright
© Abdelghani Bakhtouchi
ISSN
2634-1964
eISSN
2210-8327
DOI
10.1016/j.aci.2019.07.001
Publisher site
See Article on Publisher Site

Abstract

With the progress of new technologies of information and communication, more and more producers of data exist. On the other hand, the web forms a huge support of all these kinds of data. Unfortunately, existing data is not proper due to the existence of the same information in different sources, as well as erroneous and incomplete data. The aim of data integration systems is to offer to a user a unique interface to query a number of sources. A key challenge of such systems is to deal with conflicting information from the same source or from different sources. We present, in this paper, the resolution of conflict at the instance level into two stages: references reconciliation and data fusion. The reference reconciliation methods seek to decide if two data descriptions are references to the same entity in reality. We define the principles of reconciliation method then we distinguish the methods of reference reconciliation, first on how to use the descriptions of references, then the way to acquire knowledge. We finish this section by discussing some current data reconciliation issues that are the subject of current research. Data fusion in turn, has the objective to merge duplicates into a single representation while resolving conflicts between the data. We define first the conflicts classification, the strategies for dealing with conflicts and the implementing conflict management strategies. We present then, the relational operators and data fusion techniques. Likewise, we finish this section by discussing some current data fusion issues that are the subject of current research.

Journal

Applied Computing and InformaticsEmerald Publishing

Published: Jun 21, 2022

Keywords: Data reconciliation; Records linkage; Data fusion; Conflicts resolution; Integration

References