Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multi-modular design optimization and multidisciplinary design optimization

Multi-modular design optimization and multidisciplinary design optimization Purpose – For complex engineering problems, multidisciplinary design optimization (MDO) techniques use some disciplines that need to be run several times in different modules. In addition, mathematical modeling of a discipline can be improved for each module. The purpose of this paper is to show that multi-modular design optimization (MMO) improves the design performances in comparison with MDO technique for complex systems. Design/methodology/approach – MDO framework and MMO framework are developed to optimum design of a complex system. The nonlinear equality and inequality constrains are considered. The system optimizers included Genetic Algorithm and Sequential Quadratic Programming. Findings – As shown, fewer design variables (optimization variables) are needed at the system level for MMO. Unshared variables are optimized in the related module when shared variables are optimized at the system level. The results of this research show that MMO has lower elapsed times (14 percent) with lower F -count (16 percent). Practical implications – The monopropellant propulsion upper-stage is selected as a case study. In this paper, the efficient model of the monopropellant propulsion system is proposed. According to the results, the proposed model has acceptable accuracy in mass model (error < 2 percent), performance estimation (error < 6 percent) and geometry estimation (error < 10 percent). Originality/value – The monopropellant propulsion system is broken down into the three important modules including propellant tank (tank and propellant), pressurized feeding (tank and gas) and thruster (catalyst, nozzle and catalysts bed) when chemical decomposition, aerothermodynamics, mass and configuration, catalyst and structure have been considered as the disciplines. The both MMO and MDO frameworks are developed for the monopropellant propulsion system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Unmanned Systems Emerald Publishing

Multi-modular design optimization and multidisciplinary design optimization

Loading next page...
 
/lp/emerald-publishing/multi-modular-design-optimization-and-multidisciplinary-design-AFPHrX9mVM

References (21)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2049-6427
DOI
10.1108/IJIUS-01-2015-0001
Publisher site
See Article on Publisher Site

Abstract

Purpose – For complex engineering problems, multidisciplinary design optimization (MDO) techniques use some disciplines that need to be run several times in different modules. In addition, mathematical modeling of a discipline can be improved for each module. The purpose of this paper is to show that multi-modular design optimization (MMO) improves the design performances in comparison with MDO technique for complex systems. Design/methodology/approach – MDO framework and MMO framework are developed to optimum design of a complex system. The nonlinear equality and inequality constrains are considered. The system optimizers included Genetic Algorithm and Sequential Quadratic Programming. Findings – As shown, fewer design variables (optimization variables) are needed at the system level for MMO. Unshared variables are optimized in the related module when shared variables are optimized at the system level. The results of this research show that MMO has lower elapsed times (14 percent) with lower F -count (16 percent). Practical implications – The monopropellant propulsion upper-stage is selected as a case study. In this paper, the efficient model of the monopropellant propulsion system is proposed. According to the results, the proposed model has acceptable accuracy in mass model (error < 2 percent), performance estimation (error < 6 percent) and geometry estimation (error < 10 percent). Originality/value – The monopropellant propulsion system is broken down into the three important modules including propellant tank (tank and propellant), pressurized feeding (tank and gas) and thruster (catalyst, nozzle and catalysts bed) when chemical decomposition, aerothermodynamics, mass and configuration, catalyst and structure have been considered as the disciplines. The both MMO and MDO frameworks are developed for the monopropellant propulsion system.

Journal

International Journal of Intelligent Unmanned SystemsEmerald Publishing

Published: May 11, 2015

There are no references for this article.