Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multiple model adaptive control using second level adaptation for a delta-wing aircraft

Multiple model adaptive control using second level adaptation for a delta-wing aircraft Purpose – The purpose of this paper is to design a stable controller such that the control input is applied to the delta-wing aircraft in order to adjust the roll dynamics. The controller must provide a desired tracking performance with minimum tracking error. Design/methodology/approach – In this paper, the second level adaptation (SLA) strategy is applied to control a delta-wing aircraft using multiple models. The implemented control structure is compared with the first level adaptation (FLA) and model reference adaptive control (MRAC) techniques. Findings – SLA architecture not only copes with a wide uncertainty domain caused by aerodynamic effects, but also its rapid and accurate convergence is one of its most important features. Furthermore, this strategy makes a smoother control signal with respect to FLA and MRAC even at the same initial times. It should be also noted that SLA using three models, copes with uncertainty that may occur to the aircraft at high Angle Of Attacks (AOAs) at the entire flight envelope. Originality/value – In this paper for the first time the application of this strategy is used to identify and control a delta-wing aircraft. Furthermore a systematic block diagram approach is proposed for the design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Unmanned Systems Emerald Publishing

Multiple model adaptive control using second level adaptation for a delta-wing aircraft

Loading next page...
 
/lp/emerald-publishing/multiple-model-adaptive-control-using-second-level-adaptation-for-a-JtPaB4loDF

References (31)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2049-6427
DOI
10.1108/IJIUS-08-2014-0006
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to design a stable controller such that the control input is applied to the delta-wing aircraft in order to adjust the roll dynamics. The controller must provide a desired tracking performance with minimum tracking error. Design/methodology/approach – In this paper, the second level adaptation (SLA) strategy is applied to control a delta-wing aircraft using multiple models. The implemented control structure is compared with the first level adaptation (FLA) and model reference adaptive control (MRAC) techniques. Findings – SLA architecture not only copes with a wide uncertainty domain caused by aerodynamic effects, but also its rapid and accurate convergence is one of its most important features. Furthermore, this strategy makes a smoother control signal with respect to FLA and MRAC even at the same initial times. It should be also noted that SLA using three models, copes with uncertainty that may occur to the aircraft at high Angle Of Attacks (AOAs) at the entire flight envelope. Originality/value – In this paper for the first time the application of this strategy is used to identify and control a delta-wing aircraft. Furthermore a systematic block diagram approach is proposed for the design.

Journal

International Journal of Intelligent Unmanned SystemsEmerald Publishing

Published: Feb 9, 2015

There are no references for this article.