Access the full text.
Sign up today, get DeepDyve free for 14 days.
Evaluation of Differences between PaCO2 and ETCO2 by Age as Measured during General Anesthesia with Patients in a Supine Position <meta name="citation_title" content="Evaluation of Differences between PaCO 2 and ETCO 2 by Age as Measured during General Anesthesia with Patients in a Supine Position"/> <meta name="citation_abstract" content="Objective. The aim of this study was to evaluate the arterial to end-tidal partial pressure gradient of carbon dioxide according to age in the supine position during general anesthesia. Methods. From January 2001 to December 2013, we evaluated 596 patients aged ≥16 years who underwent general anesthesia in the supine position. The anesthetic charts of these 596 patients, all classified as American Society of Anesthesiologists physical status I or II, were retrospectively reviewed to investigate the accuracy of PaCO2 and ETCO2. Results. The a-ETCO2 was mmHg for patients aged 16 to <65 years and mmHg for patients ≥65 years. The a-ETCO2 was mmHg for patients aged 16 to 25 years, mmHg for patients aged 26 to 35 years, mmHg for patients aged 36 to 45 years, mmHg for patients aged 46 to 55 years, mmHg for patients aged 56 to 64 years, mmHg for patients aged 65 to 74 years, and mmHg for patients aged 75 to 84 years. Conclusion. The arterial to end-tidal partial pressure gradient of carbon dioxide tended to increase with increasing age."/> <meta name="dc.title" content="Evaluation of Differences between PaCO 2 and ETCO 2 by Age as Measured during General Anesthesia with Patients in a Supine Position"/> <meta name="dc.description" content="Objective. The aim of this study was to evaluate the arterial to end-tidal partial pressure gradient of carbon dioxide according to age in the supine position during general anesthesia. Methods. From January 2001 to December 2013, we evaluated 596 patients aged ≥16 years who underwent general anesthesia in the supine position. The anesthetic charts of these 596 patients, all classified as American Society of Anesthesiologists physical status I or II, were retrospectively reviewed to investigate the accuracy of PaCO2 and ETCO2. Results. The a-ETCO2 was mmHg for patients aged 16 to <65 years and mmHg for patients ≥65 years. The a-ETCO2 was mmHg for patients aged 16 to 25 years, mmHg for patients aged 26 to 35 years, mmHg for patients aged 36 to 45 years, mmHg for patients aged 46 to 55 years, mmHg for patients aged 56 to 64 years, mmHg for patients aged 65 to 74 years, and mmHg for patients aged 75 to 84 years. Conclusion. The arterial to end-tidal partial pressure gradient of carbon dioxide tended to increase with increasing age."/> div.banner_title_bkg div.trangle { border-color: #384844 transparent transparent transparent; opacity:0.8; /*new styles start*/ -ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=80)" ;filter: alpha(opacity=80); /*new styles end*/ } div.banner_title_bkg_if div.trangle { border-color: transparent transparent #384844 transparent ; opacity:0.8; /*new styles start*/ -ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=80)" ;filter: alpha(opacity=80); /*new styles end*/ } div.banner_title_bkg div.trangle { width: 251px; } #banner { background-image: url('http://images.hindawi.com/journals/jan/jan.banner.jpg'); background-position: 50% 0;} Hindawi Publishing Corporation Home Journals About Us Journal of Anesthesiology About this Journal Submit a Manuscript Table of Contents Journal Menu About this Journal · Abstracting and Indexing · Advance Access · Aims and Scope · Article Processing Charges · Articles in Press · Author Guidelines · Bibliographic Information · Contact Information · Editorial Board · Editorial Workflow · Free eTOC Alerts · Publication Ethics · Reviewers Acknowledgment · Submit a Manuscript · Subscription Information · Table of Contents Open Special Issues · Special Issue Guidelines Abstract Full-Text PDF Full-Text HTML Full-Text ePUB Linked References How to Cite this Article Journal of Anesthesiology Volume 2015 (2015), Article ID 710537, 5 pages http://dx.doi.org/10.1155/2015/710537 Clinical Study Evaluation of Differences between PaCO 2 and ETCO 2 by Age as Measured during General Anesthesia with Patients in a Supine Position Kenichi Satoh , 1 Ayako Ohashi , 1 Miho Kumagai , 2 Masahito Sato , 1 Akiyoshi Kuji , 2 and Shigeharu Joh 1 1 Division of Dental Anesthesiology, Department of Reconstructive Oral Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Iwate 020-8505, Japan 2 Division of Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Iwate 020-8505, Japan Received 22 November 2014; Revised 26 January 2015; Accepted 10 February 2015 Academic Editor: Robert J. Brosnan Copyright © 2015 Kenichi Satoh et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Objective . The aim of this study was to evaluate the arterial to end-tidal partial pressure gradient of carbon dioxide according to age in the supine position during general anesthesia. Methods . From January 2001 to December 2013, we evaluated 596 patients aged ≥16 years who underwent general anesthesia in the supine position. The anesthetic charts of these 596 patients, all classified as American Society of Anesthesiologists physical status I or II, were retrospectively reviewed to investigate the accuracy of PaCO 2 and ETCO 2 . Results . The a-ETCO 2 was mmHg for patients aged 16 to <65 years and mmHg for patients ≥65 years. The a-ETCO 2 was mmHg for patients aged 16 to 25 years, mmHg for patients aged 26 to 35 years, mmHg for patients aged 36 to 45 years, mmHg for patients aged 46 to 55 years, mmHg for patients aged 56 to 64 years, mmHg for patients aged 65 to 74 years, and mmHg for patients aged 75 to 84 years. Conclusion . The arterial to end-tidal partial pressure gradient of carbon dioxide tended to increase with increasing age. 1. Introduction End-tidal carbon dioxide (ETCO 2 ) is clinically used as a positive indicator of endotracheal intubation, an alert in the event of disconnection, and an estimation of arterial CO 2 tension (PaCO 2 ). ETCO 2 refers to the partial pressure of CO 2 at the end of expiration and reflects PaCO 2 [ 1 ]. ETCO 2 can be used to guide minute ventilation during general anesthesia. If a higher arterial to end-tidal partial pressure gradient of CO 2 (P[a-ET]CO 2 ) is expected, anesthetists may make incorrect judgments and provide the wrong ventilation setting. Generally, PaCO 2 is considered to exceed ETCO 2 [ 2 , 3 ]. This is because CO 2 diffuses according to its partial gradient from a comparatively higher partial pressure in the pulmonary capillary to a lower concentration in the alveolus in several conditions, such as increases in the anatomical dead space, increases in the physiologic dead space, and the presence of pulmonary embolism. The P(a-ET)CO 2 is approximately 3.6 to 4.6 mmHg in healthy awake patients [ 2 , 3 ]. Anatomical and physiologic dead space increase with increasing age; thus, increasing age may influence P(a-ET)CO 2 values. However, the influences of increasing age on P(a-ET)CO 2 are not well known. Therefore, the aim of this study was to evaluate P(a-ET)CO 2 according to age in the supine position during general anesthesia and determine the effects of a wide range of ages on P(a-ET)CO 2 . 2. Patients and Methods This retrospective study was approved by the Committee on Clinical Investigation for Human Research at Iwate Medical University. We evaluated 596 patients aged ≥16 years who underwent general anesthesia in the supine position from January 2001 to December 2013. The anesthetic charts of these 596 patients, all classified as American Society of Anesthesiologists physical status I or II (with the exception of patients with conditions such as asthma, respiratory disease, obesity (body mass index of ≥25 kg/m 2 ), and smoking), were retrospectively reviewed to investigate age, height, weight, % forced vital capacity (%FVC), % forced expiratory volume in 1 second (FEV 1.0 %), and P(a-ET)CO 2 . First, the patients were divided into two groups by age: Group I (adult; aged 16 to <65 years) and Group II (older individuals; aged 65 to 84 years). Second, patients aged 16 to 84 years were classified into seven groups by age, with each group covering one decade: Group A (aged 16–25 years), Group B (26–35 years), Group C (36–45 years), Group D (46–55 years), Group E (56–64 years), Group F (65–74 years), and Group G (75–84 years). Anesthesia was induced with intravenous propofol (1-2 mg/kg of ideal body weight) or thiopental sodium (3–5 mg/kg of ideal body weight). Muscle relaxation was provided with vecuronium bromide (0.1 mg/kg of ideal body weight) or rocuronium bromide (0.8 mg/kg of ideal body weight). After tracheal intubation, anesthesia was maintained in almost all patients with sevoflurane (1%-2%) and nitrous oxide gas if necessary, and all patients were mechanically ventilated. We usually used RAE cuffed tracheal tubes (Cuffed Murphy Eye; Covidien, Mallinckrodt, Ireland) for oral intubation and Parker Flex-Tip PFHV tubes (Parker Medical, Highlands Ranch) for nasal intubation. The ventilator settings were as follows: tidal volume, 8 to 10 mL/kg of ideal body weight; respiratory rate, 10 to 12 breaths/minute; peak airway pressure, <20 cmH 2 O; PEEP, 0 cmH 2 O; and inspiratory oxygen concentration, 33% or 40%. At 30 to 60 min after adjustment of the mechanical ventilator settings, a blood sample was drawn from the radial artery or dorsalis pedis artery. At the same time, ETCO 2 was measured at the proximal end of the tracheal tube. The PaCO 2 was measured from the arterial blood sample using a blood gas analyzer (RAPIDLab 1265; Siemens, Dublin, Ireland), and each rectal temperature was entered into the analyzer. The ETCO 2 sampling line was connected to a sidestream capnometer (Capnomac Ultima; Datex-Engstrom, Helsinki, Finland). The maximum terminal value was taken from the expiration curve of the capnograph. The ETCO 2 value was usually written on both the anesthesia record and blood gas analysis form when the arterial blood sample was obtained. The rectal temperature is usually measured in all patients undergoing general anesthesia in our institution. The authors checked the PaCO 2 and ETCO 2 on both the anesthesia record and blood gas analysis form, and the P(a-ET)CO 2 was calculated with each arterial blood gas and ETCO 2 reading. Values are presented as mean ± standard deviation. Statistical analysis was performed using SPSS, version 11.0 (SPSS, Inc., Chicago, IL, USA). Statistical analysis employed Student’s unpaired -test for comparisons between two groups and one-way analysis of variance followed by multiple-comparison testing using the Scheffe test for comparisons among groups. The relationship between P(a-ET)CO 2 and age was investigated by Pearson’s correlation coefficient test. Correlation coefficients were obtained using simple regression analysis (Excel software, 2003; Microsoft, Redmond, WA, USA). Differences were considered statistically significant at a value of <0.05. 3. Results Patients’ characteristics and laboratory data are presented in Table 1 . Table 1: Patient profiles and laboratory data by age. When we compared Groups I and II, we found significant differences in age, height, weight, %FVC, FEV 1.0 %, and P(a-ET)CO 2 (Table 1 (a) and Figure 1(a) ). The P(a-ET)CO 2 was mmHg for patients aged 16 to <65 years and mmHg for patients aged 65 to 84 years. Figure 1: Comparison of arterial to end-tidal partial pressure gradient of carbon dioxide among groups according to age. (a) Comparison of patients aged 16 to <65 years (Group I) and patients aged ≥65 years (Group II). There is a significant difference between the two groups. (b) Comparison of arterial to end-tidal partial pressure gradient of carbon dioxide among groups according to patient age (16–84 years in one-decade increments). The arterial to end-tidal partial pressure gradient of carbon dioxide tends to increase with increasing age, and there is a significant difference between Group A and Groups F and G. Significant differences in age and body mass index were observed among Groups A to G. Patients in Group G had lower body weights than patients in Groups A, B, C, D, and E; patients in Group F had lower body weights than patients in Groups A, B, and C; patients in Group E had lower body weights than patients in Groups A and B; and patients in Group D had lower body weights than patients in Group B. Patients in Group G had lower body heights than patients in Groups A, B, C, D, E, and F and patients in Group E had lower body heights than patients in Groups A and C. Patients in Group G had lower body surface areas than patients in Groups A, B, C, D, E, and F and patients in Group F had lower body mass indices than patients in Groups A and B. Patients in Group G had a lower %FVC than patients in Groups A and D and patients in Group E had a lower %FVC than patients in Group A. Patients in Group G had a lower FEV 1.0 % than patients in Groups B and E; patients in Group F had a lower FEV 1.0 % than patients in Groups A, B, and C; patients in Group E had a lower FEV 1.0 % than patients in Groups A and B; patients in Group D had a lower FEV 1.0 % than patients in Groups A and B; and patients in Group C had a lower FEV 1.0 % than patients in Group A. Patients in Group A had a lower P(a-ET)CO 2 than patients in Groups F and G. The P(a-ET)CO 2 was mmHg in patients aged 16 to 25 years, mmHg in patients aged 26 to 35 years, mmHg in patients aged 36 to 45 years, mmHg in patients aged 46 to 55 years, mmHg in patients aged 56 to 64 years, mmHg in patients aged 65 to 74 years, and mmHg in patients aged 75 to 84 years (Table 1 (b) and Figure 1(b) ). P(a-ET)CO 2 tended to increase with increasing age. Figure 2 showed the correlation between age and P(a-ET)CO 2 ; P(a-ET)CO 2 linearly increased with increasing age (P[a-ET]CO 2 = 1.9524 + 0.0265 × age; ; ) and there was a slight correlation between the two. Figure 2: Relationship between arterial to end-tidal partial pressure gradient of carbon dioxide and age. A poor positive correlation is found between the arterial to end-tidal partial pressure gradient of carbon dioxide and age ( , ). 4. Discussion In this study, we found that the mean P(a-ET)CO 2 was 2.4 to 4.3 mmHg and that the P(a-ET)CO 2 tended to increase with increasing age in patients anesthetized in the supine position. We obtained P(a-ET)CO 2 values of 2.4 to 4.3 mmHg, similar to the gradient of values previously reported for other clinical situations. Several prior studies have focused on the type of surgery or operating position, but age has not been previously considered in anesthetized patients. The typical P(a-ET)CO 2 is approximately 2.0 to 5.0 mmHg in healthy adults [ 1 ]. The following P(a-ET)CO 2 values have been found in anesthetized neurosurgical patients. In mechanically ventilated neurosurgical patients undergoing craniotomies in various studies, the average P(a-ET)CO 2 was mmHg in 35 patients [ 3 ], 3.6 mmHg in 24 stable patients [ 2 ], mmHg [ 4 ], and mmHg [ 5 ]. Another study assessed the accuracy of ETCO 2 in estimating PaCO 2 during neurosurgical procedures according to surgical position; the average P(a-ET)CO 2 was mmHg for patients in the supine position, mmHg in the lateral position, mmHg in the prone position, and mmHg in the sitting position [ 6 ]. The main differential in the present study is the wide range of ages assessed, not the type of surgery or position. Because of the high number of patients investigated, our results have great potential to be used as reliable basic data regarding P(a-ET)CO 2 during general anesthesia. P(a-ET)CO 2 tended to increase with increasing age. In the two main categories of age, the P(a-ET)CO 2 for patients aged 16 to <65 years was higher than that for patients aged 65 to 84 years. In the seven subcategories of age, with each group covering one decade, the P(a-ET)CO 2 was higher with increasing age. The P(a-ET)CO 2 can be explained by the theories of dead space, shunting, and ventilation-perfusion mismatch (V/Q mismatch) [ 7 , 8 ]. Increased intrapulmonary shunting and decreased functional residual capacity with ventilation-perfusion inhomogeneity have been recognized as part of the associated pathophysiology [ 9 , 10 ]. It is recognized that V/Q mismatch can occur in patients given general anesthesia or in those with lung disease [ 11 ]. Herr et al. [ 12 ] reported that an increased was associated with increases in venous admixture and might result in slightly increased P(a-ET)CO 2 . However, Russell and Graybeal [ 3 ] and Russell et al. [ 13 ] found no significant influence of , cardiac output, systemic vascular resistance, pulmonary vascular resistance, or infusions of dopamine, nitroglycerine, and nitroprusside on the P(a-ET)CO 2 . In the present study, anesthesia was performed at O 2 concentrations of 33% or 40%, and whether influenced P(a-ET)CO 2 was unclear. Based on the above findings, physiological changes are likely attributed to the increased P(a-ET)CO 2 because the anatomical and physiological dead spaces increase with increasing age. In this study, there was a slight correlation between P(a-ET)CO 2 and age. However, the correlation between P(a-ET)CO 2 and age was lower ( ) than that reported previously in other clinical situations. In a study of elective craniotomies, Russell and Graybeal [ 3 ] reported a correlation coefficient ( ) of 0.632 in the supine position and an of 0.61 in the supine position, 0.62 in the lateral position, 0.55 in the prone position, and 0.46 in the sitting position [ 6 ]. The ETCO 2 did not provide a stable reflection of PaO 2 in this study. In conclusion, P(a-ET)CO 2 tended to increase with increasing age and there was a slight correlation between P(a-ET)CO 2 and age. We must be aware that greater differences in P(a-ET)CO 2 are expected with increasing age and ensure that ETCO 2 is used to guide minute ventilation during general anesthesia. Abbreviations ETCO 2 : End-tidal carbon dioxide PaCO 2 : Partial pressure of carbon dioxide in arterial blood P(a-ET)CO 2 : Arterial to end-tidal partial pressure gradient of carbon dioxide : Fraction of inspiratory oxygen. Conflict of Interests The authors declare that they received no financial support and have no conflict of interests. Disclosure The authors do not have a financial relationship with the organization that sponsored the research. References K. Bhavani-Shankar, H. Moseley, A. Y. Kumar, and Y. Delph, “Capnometry and anaesthesia,” Canadian Journal of Anaesthesia , vol. 39, no. 6, pp. 617–632, 1992. View at Publisher · View at Google Scholar · View at Scopus S. Takki, U. Aromaa, and A. Kauste, “The validity and usefulness of the end-tidal PCO 2 during anaesthesia,” Annals of Clinical Research , vol. 4, no. 5, pp. 278–284, 1972. View at Scopus G. B. Russell and J. M. Graybeal, “The arterial to end-tidal carbon dioxide difference in neurosurgical patients during craniotomy,” Anesthesia and Analgesia , vol. 81, no. 4, pp. 806–810, 1995. View at Publisher · View at Google Scholar · View at Scopus M. B. Weinger and J. E. Brimm, “End-tidal carbon dioxide as a measure of arterial carbon dioxide during intermittent mandatory ventilation,” Journal of Clinical Monitoring , vol. 3, no. 2, pp. 73–79, 1987. View at Publisher · View at Google Scholar · View at Scopus J. F. Nunn and D. W. Hill, “Respiratory dead space and arterial to end-tidal CO 2 tension difference in anesthetized man.,” Journal of Applied Physiology , vol. 15, pp. 383–389, 1960. View at Scopus B. Grenier, E. Verchère, A. Mesli et al., “Capnography monitoring during neurosurgery: reliability in relation to various intraoperative positions,” Anesthesia and Analgesia , vol. 88, no. 1, pp. 43–48, 1999. View at Publisher · View at Google Scholar · View at Scopus G. Hedenstierna, “Atelectasis formation and gas exchange impairment during anaesthesia,” Monaldi Archives for Chest Disease , vol. 49, no. 4, pp. 315–322, 1994. View at Scopus H. Yamauchi, S. Ito, H. Sasano, T. Azami, J. Fisher, and K. Sobue, “Dependence of the gradient between arterial and end-tidal PCO 2 on the fraction of inspired oxygen,” British Journal of Anaesthesia , vol. 107, no. 4, pp. 631–635, 2011. View at Publisher · View at Google Scholar · View at Scopus R. Demling and R. Riessen, “Pulmonary dysfunction after cerebral injury,” Critical Care Medicine , vol. 18, no. 7, pp. 768–774, 1990. View at Publisher · View at Google Scholar · View at Scopus K. R. Cooper and P. A. Boswell, “Reduced functional residual capacity and abnormal oxygenation in patients with severe head injury,” Chest , vol. 84, no. 1, pp. 29–35, 1983. View at Scopus L. Tokics, G. Hedenstierna, L. Svensson et al., “V/Q distribution and correlation to atelectasis in anesthetized paralyzed humans,” Journal of Applied Physiology , vol. 81, no. 4, pp. 1822–1833, 1996. View at Scopus J. H. Herr, P. Foex, and D. A. Pybus, “Relationships between inspired oxygen concentration and venous admixture during nitrous oxide-oxygen-halothane anaesthesia,” British Journal of Anaesthesia , vol. 57, no. 12, pp. 1150–1160, 1985. View at Publisher · View at Google Scholar · View at Scopus G. B. Russell, J. M. Graybeal, and J. C. Stroudt, “Stability of arterial to end-tidal carbon dioxide gradients during postoperative cardiorespiratory support,” Canadian Journal of Anaesthesia , vol. 37, no. 5, pp. 560–566, 1990. View at Publisher · View at Google Scholar · View at Scopus (function (i, s, o, g, r, a, m) { i['GoogleAnalyticsObject'] = r; i[r] = i[r] || function () { (i[r].q = i[r].q || []).push(arguments) }, i[r].l = 1 * new Date(); a = s.createElement(o), m = s.getElementsByTagName(o)[0]; a.async = 1; a.src = g; m.parentNode.insertBefore(a, m) })(window, document, 'script', '//www.google-analytics.com/analytics.js', 'ga'); ga('create', 'UA-8578054-2', 'auto'); ga('send', 'pageview');
Journal of Anesthesiology – Hindawi Publishing Corporation
Published: Mar 2, 2015
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.