Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This manuscript presents a novel micro-grid protection scheme based on S-transform (ST) and machine learning techniques. Initialisation of the proposed approach is done by extracting the current signals from the targeted buses of different feeders and pre-processing through ST to derive different needful differential features. The extracted features are further used as an input vector to the machine learning model to classify the fault events. The proposed micro-grid protection scheme is tested for different protection scenario, such as the type of fault (symmetrical, asymmetrical and high impedance fault), micro-grid structure (radial and mesh) and mode of operation (islanded and grid connected), etc. Three different machine learning models are tested and compared in this framework: naïve Bayes classifier (NBC), support vector machine (SVM) and extreme learning machine (ELM). The extensive simulated results from a standard IEC micro-grid model prove the effectiveness and reliability of proposed micro-grid protection scheme.
International Journal of Advanced Mechatronic Systems – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.