Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
In text-based image retrieval, matching is a technique that retrieves for a concept query Q, images annotated with Q. The result performance is very influenced by the annotation quality. Since it is difficult to have a well-annotated data set, the retrieval neglects many relevant images simply because they are not annotated with the query concept (i.e. missing problem). In this paper, we propose a solution that considerably minimises such a problem, by integrating the semantic relatedness between concepts into the retrieval. We compute the semantic relatedness between pairs of concepts from Wikipedia articles. We use term frequency - inverse collection term frequency weighting scheme and the cosine similarity. After evaluating the obtained values, using the human judgement benchmark WordSimilarity-353, we incorporated them into image retrieval task. The experimental results on Corel 5K data set clearly show the ability of the proposed method in detecting missing images, compared with matching and some literature works.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.