Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This paper proposes a novel technique for accelerating the convergence of the previously published norm-optimal iterative learning control (NOILC) methodology. The basis of the results is a formal proof of an observation made by the first author, namely that the NOILC algorithm is equivalent to a successive projection algorithm between linear varieties in a suitable product Hilbert space. This leads to two proposed accelerated algorithms together with well-defined convergence properties. The results show that the proposed accelerated algorithms are capable of ensuring monotonic error norm reductions and can outperform NOILC by more rapid reductions in error norm from iteration to iteration. In particular, examples indicate that the approach can improve the performance of NOILC for the problematic case of non-minimum phase systems. Realisation of the algorithms is discussed and numerical simulations are provided for comparative purposes and to demonstrate the numerical performance and effectiveness of the proposed methods.
International Journal of Advanced Mechatronic Systems – Inderscience Publishers
Published: Jan 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.