Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This paper proposes an effective adaptive-scale convolutional neural networks (A-SCNN) for texture image analysis. We combine the multi-scale texture image analysis with the efficient feature space of a convolutional neural network to extract characteristic texture features. These latter encode regions of adaptive sizes centered on each pixel according to different optimal scales reflecting the local structure pattern content. To fix the scale-space values accurately, the Hessian-Laplacian operator is used. Experimental results demonstrate a good performance of the proposed A-SCNN in texture classification. Particularly, the CNN based on the adaptive scale shows promising for irregular texture pattern classification, and the selective sizes of both feature maps and receptive fields can further improve the performance of the classical CNN texture discrimination ability.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.