Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Impeller is widely used in modern industry and plunge milling is considered as the most effective way for rough machining of impeller channel. However, for extremely twisted blade, single layer milling may easily cause large machining allowance, which will influence cutting efficiency seriously. Therefore, a new approach to tool path planning for layered plunge milling of free-form surface impeller channel is presented. Firstly, a feasible method of machinability analysis of channel is given. Secondly, the layered model of plunge milling which relative to the maximum tool and tool length is constructed. And then according to the model, tool path of layered plunge milling could be planned. Finally, the generated tool path of single layer and layered plunge milling are simulated. Simulation result shows that the approach is appropriate and feasible to reduce the machining allowance and reduce the working load for the following semi-finishing and finishing milling. [Received 30 September 2016; Revised 15 November 2016; Accepted 18 January 2017] Keywords: impeller channel; free-form surface; tool path planning; plunge milling; machinability analysis. Reference to this paper should be made as follows: Zhang, Y., Zhang, D. and Han, F. (2017) ` of free-form surface impeller channel', Int. J. Manufacturing Research,
International Journal of Manufacturing Research – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.