Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
In this investigation, an efficient hybrid approach involving phase congruency (PC) and shift invariant feature transform (SIFT) for face recognition is presented. The present study exploits the advantages of PC and SIFT together for the purpose of efficient feature extraction for the facial images. The effectiveness of the present work is analysed and compared using other classifiers, i.e. K-means and self-organizing map. The results of this study demonstrate that phase congruency - shift invariant feature transform is robust to expression variations and shows better performance than other comparative methods and achieves good recognition accuracy. Studies are conducted on Japanese female facial expression and Yale databases. The proposed technique has been compared with the existing techniques, and from the experiments, it is observed that the results of the proposed technique are better than the existing techniques.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.